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An Optimal Method for Estimating GPS Ambiguities (OMEGA) that enables very high performance and computational efficiency 

has been developed and demonstrated. This method employs two search space reduction processes – a scaling and a screening process 
– that are related to the search space transformation and the ambiguity candidate filtering in multi-search levels. To obtain the highest 
efficiency, an optimization procedure, which determines the parameters to minimize the number of candidates under given conditions, 
is implemented in closed-form before the search-verification step. The method is essentially based on the least-squares-approach 
originally proposed by Hatch but uses a modified and more efficient process. Two improved algorithms are introduced in this paper. 
First, an alternative algorithm for the spectral decomposition, which reduces the dimension of the residuals vector to its degrees of 
freedom, is given in closed form. This algorithm is implemented in the computational step of the quadratic form of the residuals in 
order to increase computational efficiency. Second, an efficient error model for the threshold of the filter equation that is used to 
derive the search space scaling process is given. This error model shows two advantages: 1) it bounds noise signals of the filter 
equation; 2) it gives efficient thresholds so that the scaling effects for the search space can be increased. 

 
 
 
1. Introduction 
In navigation and surveying systems using GPS carrier 

phase data, the performance of ambiguity resolution and 
computational efficiency are of great concern. These 
capabilities are often traded off in designing the system. One 
possible way to overcome the trade-off loss is to reduce the 
number of ambiguity candidates before or at the search-
verification step. The search space transformation (Abidin, 
1993; Teunissen, 1994; Martin-Neira et al., 1995) and 
ambiguity candidate filtering in multi-search levels (Chen and 
Lachapelle, 1995; Teunissen, 1997) are effective techniques 
for that purpose. 

When we use a process similar to the least-squares-approach 
of Hatch (1990) at the search-verification step, it is possible to 
implement optimization procedures reducing the number of 
candidates before implementing the step. We showed that this 
could be achieved using the design matrix of the linearized 
double-difference observables in Kim and Langley (1999). 
These optimization procedures include two search-space 
reduction processes (i.e., a scaling and a screening process) 
and two-step optimization processes – a global optimization to 
find a matrix S minimizing the total search space volume and 
a local optimization to find a reordered matrix S minimizing 
the total search space volume out of all possible combinations 
of S, where the matrix S is computed using the design matrix. 

To increase computational efficiency, further attention has 
been given to the quadratic form of the residuals and to error 
models for the thresholds of the filter equation. The quadratic 
form of the residuals is generally used for the ambiguity 
acceptance test and is the practical computational part in the 
ambiguity search-verification step. Therefore, we need to 

decrease computational burden using a more efficient 
computational algorithm. A significant reason for needing a 
more efficient error model for the filter thresholds is that the 
filter thresholds are related to a magnification factor of the 
scaling process. The more efficient the error model, the greater 
the scaling effect. 
 
1.1 The GPS Observables 

To simplify discussions, we will assume that the float 
estimates of the ambiguities and their error models are given. 
For the double-difference observables recorded on short 
baselines, the satellite and the receiver clock biases are 
removed, and the residual atmospheric effects are negligible.  
Ignoring multipath, we have 
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where l is the nx1 initial misclosure vector of the difference 
between the double-difference observations and their 
estimates; n is the number of the double-difference 
observations; x is the 3x1 vector of the unknown remote 
(rover) station position components; A is the design matrix for 
the unknown position; N is the nx1 vector of ambiguity 
parameters; e is the nx1 vector of the double-difference 
observation noise; [ ]E i  and [ ]Cov i  represent the 

mathematical expectation and the variance-covariance 
operators, respectively. 
 
 
 



1.2 The Modified Least-Squares Approach 
Using the same terminology as Hatch (1990), we outline the 

modified process for the least-squares approach in Table 1. In 
the computational equations, the subscripts “p” and “s” 
represent the primary and the secondary group of satellites; 
and [ ]round i  is the rounding-to-the-nearest-integer operator.  

When compared with the original least-squares approach, 
the modified approach gives exactly the same residuals. To 
prove the equivalence of both approaches, we will define: 
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Then, we have following equality: 
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Subtracting the residuals for both approaches and applying 

Eq. (3) gives 
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where subscripts “o” and “m” represent the original and 
modified approaches. 

 
 

Table 1. Modified least-squares-approach. 
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1.3 The Filter Equation for the Secondary Innovations 
Vector 

When we compute the residuals using the modified approach 
in Table 1, the only variable parameter is the secondary 
innovations vector. In accord with the least-squares principle, 
the optimal estimator for the secondary innovations vector is 
given as:  
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We can recognize that the optimal estimator is independent 

of the search-verification step, since it is derived from the 
design matrix and the initial misclosure vector for the primary 
group. These parameters are constant in a snapshot (i.e., single 
epoch) approach, such as the least-squares approach. One 
natural idea to utilize the optimal estimator is to define a filter 
equation as: 
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Using the filter equation and a certain threshold vector ττ, we 

can define a filter as: 
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The dimension of n-3 for the filter equation and threshold 

vector comes from the dimension difference between the (n-
dimensional) double-difference observations and the (3-
dimensional) unknown remote station position components. 
 
2. Quadratic Form of the Residuals 

For the ambiguity acceptance test, we have to compute the 
quadratic form of the residuals for all ambiguity candidates in 
the ambiguity search-verification step. Two approaches can be 
considered for decreasing computational burden – search 
space (or ambiguity candidates) reduction and computational 
algorithm improvement. We will focus on the computational 
algorithm for the quadratic form of the residuals in this paper. 
Using the computational equation for the residuals in Table 1, 
the quadratic form of the residuals is given as: 
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where 
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Spectral decomposition for a singular symmetric matrix ΣΣ is 

expressed as (Basilevsky, 1983): 
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where the nx(n-3) matrix E  contains the nx1 latent vectors 
(eigenvectors) 1 2 n-3E , E , , EL  and the (n-3)x(n-3) diagonal 

matrix ΛΛ  possesses n-3 nonzero latent roots (eigenvalues) 

1 2 3, , , nλ λ λ −L . Substituting Eq. (11) into (9) gives 
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where 
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We can find an example of this algorithm in Martin-Neira et 

al. (1995). An alternative algorithm for the spectral 
decomposition approach can be derived using the following 
relational equations. From Eq. (4), rewriting the residuals 
gives 
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Therefore, using the partitioned matrices of = − *G I AA , 

we have two relational equations from Eq. (14) as: 
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Using the partitioned matrices of = -1P Q , the quadratic 

form of the residuals can be expressed as: 
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Defining = -1

ps ssU G G  and substituting Eqs. (15) and (16) 

into (17) gives 
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Furthermore, the following equality can be proved: 
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where VssQ  is a partitioned matrix of the variance-covariance 

of v, vQ . 

To compare the computational efficiency of different 
algorithms, we outline three algorithms for the computation of 
the quadratic form of the residuals in Table 2. The 

computational algorithms A1 and A2 represent a normal and a 
spectral decomposition approach. The computational 
algorithm A3 is an alternative approach for the computational 
algorithm A2. The computational steps are separated into three 
parts for clarity – common, external, and internal. The external 
part is computed before the ambiguity search-verification step. 
On the other hand, the internal part is computed in the search 
loop. Therefore, the computational efficiency of the internal 
part is usually of great concern.  
 

  
Table 2. Comparison of the computational algorithms. 
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3. Error Model for the Filter Threshold 

In general, the threshold vector ττ in Eq. (7) can be derived 
from the quadratic form of the filter equation as: 
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where wQ  is the variance-covariance matrix of w and c is a 

positive constant which can be selected based on the 
probability distribution of w. Therefore, we can determine 
confidence intervals bounding a confidence ellipsoid which is 
formed by choosing c at a certain confidence level. Then, one 
simple way to set the thresholds is 
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where wiσ  is the square root of the ith diagonal element in 

wQ . It should be noted that the confidence level of the 

thresholds is different from that of the confidence ellipsoid. 
(When we mention a confidence level in this paper, it refers to 
the confidence ellipsoid.) However, we can recognize in Eq. 
(6) that it is not easy to establish correctly the variance-
covariance matrix wQ  and the probability distribution of w. 

For this reason, we have used an alternative approach for the 
quadratic form of the filter equation. In general, the ellipsoidal 
region in 3n−¡  centered on the estimator x̂  of a certain vector 
x can be expressed as (Giri, 1977): 
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where x̂Q  is the variance-covariance matrix of x̂ . The family 

of ellipsoids obtained by varying c (c>0) has the same center 
x̂ , their shapes and orientation are determined by x̂Q , and 

their sizes are determined by c. It should be noted that the 
positive constant c does not have probabilistic sense unless the 
probability distribution of x is known. From Eq. (23), the 
thresholds are given as: 
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where x̂iσ  is the square root of the ith diagonal element in x̂Q . 

One condition required in this approach is that the estimator x̂  
should be the unbiased estimator of x; then, we can get 
different thresholds according to the weighting scheme of x̂Q . 

Three cases from (a) to (c) in Table 3 show the unbiased 
estimators of x and their error models. Because both x and x̂  
are probabilistic variables, the condition of unbiasedness 
becomes 
 

[ ] [ ]ˆ .E E=x x   (25) 

 
For each case, the condition of unbiasedness can be proved 

if the following equality holds (more details in Teunissen 
(1998)): 
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Three error models for the filter thresholds (i.e., the error 

models from (a) to (c)) were tested and discussed in Kim and 
Langley (1999). A rigorous error model, which is related to 
deciding the value of the positive constant c in a probabilistic 
sense, can be derived from Eqs. (18) and (21). From these two 
equations, we can express a correct error model of the filter 
equation w as: 
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Assuming that the double-difference observation noise e in 

Eq. (1) has a normal distribution, we have 
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where α is the level of significance. Therefore, we can 
determine the positive constant c with a certain confidence 
level in accord with α. Table 3 shows the summary of the 
error models for the filter thresholds. In each error model, the 
variance-covariance matrices with subscripts are the sub-
matrices partitioned from the variance-covariance matrix of 
the double-difference observations in Eq. (1). 

Table 3. Error models for the filter thresholds. 
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4. Results 
To test the efficiency of the computational algorithms for the 

quadratic form of the residuals and the performance of the 
error models for the filter thresholds, we processed some of 
the test data recorded at one reference station in the Canadian 
Coast Guard (CCG) DGPS and OTF network and that 
recorded simultaneously on board a hydrographic sounding 
ship at Trois-Rivières, on the St. Lawrence River, 130 km 
upstream (southwest) of Québec City, on 30 September 1998 
(Fig. 1). The data set contains both L1 and L2 observations 
recorded at a one second sampling interval for two hours in 
kinematic mode. Baseline length between the reference station 
and hydrographic sounding ship was about 40 km. 

The results of our analyses are presented in two parts: the 
floating point operation count (FLOPS) test of the 
computational algorithms for the quadratic form of the 
residuals; and the performance of the error models for the 
filter thresholds. 
 
4.1 Computational Algorithm Efficiency 

Using each computational algorithm for the quadratic form 
of the residuals in Table 2, the FLOPS test was conducted to 
compare the efficiency of the algorithms. (Although this test 
cannot give us a realistic computation time, we can see the 
relative efficiencies of the algorithms.) Table 4 shows the test 
results. Test conditions were given as: 1) three-level search 
loops were built; 2) the search range for each search level was 
given as 2 m, therefore, twenty-one candidates were given for 
each search level; 3) seven satellites were used. 
      

Table 4. FLOPS test results. 
 

 A1 A2 A3 

Common 1,588 

External 868 5,278 1,040 

Internal 1,917,027 722,358 694,575 

Total 1,919,483 729,674 697,203 

 
 

The normal computational algorithm A1 gave the worst 
computational efficiency and the alternative algorithm A3 for 



the spectral decomposition approach gave the best results. 
Compared with the normal algorithm A1, the efficiency of the 
spectral decomposition algorithm A2 was improved by about 
62%. In the case of the alternative algorithm A3, the 
efficiency was improved by about 64%. In both the external 
and internal computation parts, the alternative algorithm A3 
was superior to the spectral decomposition algorithm A2. We 
have obtained consistent results under different test 
conditions. We can say therefore, that the alternative 
algorithm A3 is the most efficient algorithm of the three 
algorithms tested for computing the quadratic form of the 
residuals no matter which test conditions are given.   

 
4.2 Error Model Performance 
To compare the performance of the error models, the filter 

thresholds were computed using Eqs. (22) and (24) for each 
error model in Table 3. The positive constant value c was 
determined from the chi-squared distribution at the 95% 
confidence level with n-3 degrees of freedom (i.e., we 
assumed that the double-difference observation noise follows 
the normal distribution). As was mentioned previously, 
however, this choice of c cannot guarantee the same 
confidence level to the error models from (a) to (c) in Table 3, 
because these error models are not based on a rigorously-
defined probability distribution. Even though this limitation 
exists, we considered, as a matter of convenience, that the 
positive constant c has the same confidence level for all error 
models in our investigations. 

Fig. 2 shows the overall performance of the error models, 
i.e., how well the filter thresholds (solid lines) bound the 
values of the filter equation (dots). To investigate the 
performance of the error models in detail, we plotted the filter 
thresholds for each error model and for the double-difference 
time series of PRN 9 and 8 separately in Fig. 3. We need in 
general an error model that protects all the values of the filter 
equation for true ambiguities in the given confidence level, 
which at the same time is also efficient. The third error model 
satisfies these criteria as shown by the examples in Fig. 3. On 
the other hand, it is evident that the first error model does not 
satisfy these criteria. Furthermore, the first error model did not 
react well to the noise level of the filter equation. For the 
second and fourth error models, our investigations have shown 
that both of these error models have similar characteristics 
(sometimes, almost identical). In fact, the equation for the 
fourth error model can be developed in a similar form to that 
of the second error model in Table 3. According to the 
partitioned design matrices, both error models would be 
almost identical. The performance of these error models is not 
much different from that of the third error model as shown by 
the examples in Fig. 3. 

 
5. Conclusions 

The work reported in this paper has been a follow-on study 
stemming from our previous work as reported in Kim and 
Langley (1999). Two aspects – error models for the filter 
thresholds and computational algorithms in the search-
verification step – have been investigated in detail. For the 

computational algorithms of the quadratic form of the 
residuals in Table 2, we found that the alternative algorithm 
A3 for the spectral decomposition is the most efficient. 
Regarding the error models for the filter thresholds in Table 3, 
we found that three of the four error models performed well, 
i.e., the filter thresholds bounded almost all the noise signals 
of the filter equation. Only the first of the four performed 
poorly. We also found that the second and fourth error models 
have similar behavior. However, because of the meaning of 
the positive constant c (i.e., for robustness, it should be 
determined not arbitrarily but in a probabilistic sense), we 
have considered the fourth error model as the most rigorous 
approach in our investigations.  
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Fig. 1. Canadian Coast Guard DGPS and OTF network: coverage of the St. Lawrence River. Test data were recorded at the Trois-Rivières 
reference station and a hydrographic sounding ship on September 30, 1998. 

 
 

 
Fig. 2. Overall performance analysis of the error models (95% confidence level): Only positive threshold values are plotted for simplicity. 
The filter thresholds bound the values of the filter equation for each double-difference time series in order to guarantee a reduced search 
space including true ambiguities within the given confidence level. 



 
 

 
Fig. 3. Performance comparison of the error models for the PRN 9&8 double-difference time series (95% confidence level): The error 

models from (a) to (d) are defined in Table 3. 

 
 
 


