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ABSTRACT 
 

An Optimal Method for Estimating GPS Ambiguities 
(OMEGA) that enables very high performance and 
computational efficiency has been developed and 
demonstrated. This method employs two search space 
reduction processes – a scaling and a screening process – 
that are related to the search space transformation and the 
ambiguity candidate filtering in multi-search levels. To 
obtain the highest efficiency, an optimization procedure, 
which determines the parameters to minimize the number 
of candidates under given conditions, is implemented in 
closed-form before the search-verification. The method is 
essentially based on the least-squares-approach originally 
proposed by Hatch but uses a modified and more efficient 
process. 

 
Two improved algorithms are introduced in this paper. 

First, an alternative algorithm for the spectral 
decomposition, which reduces the dimension of the 
residuals vector to its degrees of freedom, is given in 
closed form. This algorithm is implemented in the 
computational step of the quadratic form of the residuals 
in order to increase computational efficiency. Second, an 
efficient error model for the threshold of the filter 
equation that is used to derive the search space scaling 
process is given. This error model shows two advantages: 
1) it bounds noise signals of the filter equation; 2) it gives 
efficient thresholds so that the scaling effects for the 
search space can be increased.  

 
INTRODUCTION 
 

In navigation and surveying systems using GPS carrier 
phase data, the performance of ambiguity resolution and 
computational efficiency are of great concern. These 
capabilities are often traded off in designing the system. 
One possible way to overcome the trade-off is to reduce 
the number of ambiguity candidates before or at the 
search-verification step. The search space transformation 
[Abidin, 1993; Teunissen, 1994; Martin-Neira et al., 
1995] and ambiguity candidate filtering in multi-search 

levels [Chen and Lachapelle, 1995; Teunissen, 1997] are 
effective techniques for that purpose. 

 
When we use a process similar to the least-squares-

approach of Hatch [1990] at the search-verification step, 
it is possible to implement optimization procedures 
reducing the number of candidates before implementing 
the step. We showed that this could be achieved using the 
design matrix of the linearized double-difference 
observables in Kim and Langley [1999]. These 
optimization procedures include two search space 
reduction processes (i.e., a scaling and a screening 
processe) and two-step optimization processes – a global 
optimization to find a matrix S minimizing the total 
search space volume and a local optimization to find a 
reordered matrix S minimizing the total search space 
volume out of all possible combinations of S, where the 
matrix S is computed using the design matrix. 

 
To increase computational efficiency, further attention 

has been given to the quadratic form of the residuals and 
to error models for the thresholds of the filter equation. 
The quadratic form of the residuals is generally used for 
the ambiguity acceptance test and is the practical 
computational part in the ambiguity search-verification 
step. Therefore, we need to decrease computational 
burden using a more efficient computational algorithm. A 
significant reason for needing a more efficient error 
model for the filter thresholds is that the filter thresholds 
are related to a magnification factor of the scaling 
process. The more efficient the error model, the more the 
scaling effect. 
 
The GPS Observables 
 

To simplify discussions, we will assume that the float 
estimates of ambiguities and their error models are given. 
For the double-difference observables recorded on short 
baselines, the satellite and the receiver clock biases are 
removed, and the residual atmospheric effects are 
negligible.  Ignoring multipath, we have 
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where l is the nx1 initial misclosure vector of the 
difference between the double-difference observations 
and their estimates; n is the number of the double-
difference observations; x is the 3x1 vector of the 
unknown remote (rover) station position components; A 
is the design matrix for the unknown position; N is the 
nx1 vector of ambiguity parameters; e is the nx1 vector of 
the double-difference observation noise; [ ]E i and [ ]Cov i  

represent the mathematical expectation and the variance-
covariance operators, respectively. 
 
The Modified Least-Squares Approach 
 

Using the same terminology as Hatch [1990], we 
outline the modified process for the least-squares 
approach in Table 1. In the computational equations, the 
subscripts “p” and “s” represent the primary and the 
secondary group of satellites; and [ ]round i  is the 

rounding-to-the-nearest-integer operator.  
 

Table 1. Modified least-squares-approach. 
 

Computational equations Processing 
steps Original approach Modified approach 

Potential 
solutions 

3( ) Z∈-1
p p p p px = A l - N , N  3Z∈-1

p p p px = -A N , N  

Secondary 
ambiguities 

3, nround Z − = ∈ 
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s s s p p p sN l - A A (l - N ) N  

Innovations 
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′
′
p
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s s s p p p s

l = 0
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′
p p

-1
s s s p p s
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Residuals , ,′ ′ ′ ′  
T* * T -1 -1 T -1 T T

p sv = (I - AA )l A = (A Q A) A Q l = l l  

 
 
When compared with the original least-squares 

approach, the modified approach gives exactly the same 
residuals. To prove the equivalence of both approaches, 
we will define: 
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Then, we have following equality: 
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Subtracting the residuals for both approaches and 
applying equation (3) gives 
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where subscripts “o” and “m” represent the original and 
modified approaches. 
 
The Filter Equation for the Secondary Innovations 
Vector 
 

When we compute the residuals using the modified 
approach in Table 1, the only variable parameter is the 
secondary innovations vector. In accord with the least-
squares principle, the optimal estimate for the secondary 
innovations vector is given as:  
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We can recognize that the optimal estimate is 

independent of the search-verification step, since it is 
derived from the design matrix and the initial misclosure 
vector for the primary group. These parameters are 
constant in a snapshot (i.e., single epoch) approach, such 
as the least-squares approach. One natural idea to utilize 
the optimal estimate is to define a filter equation as: 
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Using the filter equation and a certain threshold vector 

τ, we can define a filter as: 
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The dimension of n-3 for the filter equation and 

threshold vector comes from the dimension difference 
between the (n-dimensional) double-difference 
observations and the (3-dimensional) unknown remote 
station position components. 
 
QUADRATIC FORM OF THE RESIDUALS 
 

For the ambiguity acceptance test, we have to compute 
the quadratic form of the residuals for all ambiguity 
candidates in the ambiguity search-verification step. Two 



approaches can be considered for decreasing 
computational burden – search space (or ambiguity 
candidates) reduction and computational algorithm 
improvement. We will focus on the computational 
algorithm for the quadratic form of the residuals in this 
paper. Using the computational equation of the residuals 
in Table 1, the quadratic form of the residuals is given as: 
 

′ ′= ΣT -1 Tv Q v l l   (9) 
 
where 

( ) ( ).Σ = − −
T* -1 *I AA Q I AA  (10) 

 
Spectral decomposition for a singular symmetric matrix 

Σ is expressed as [Basilevsky,1983]: 
 

Σ = Λ TE E   (11) 
 
where the nx(n-3) matrix E  contains the nx1 latent 
vectors 1 2 n-3E , E , , EL  and the (n-3)x(n-3) diagonal 

matrix Λ possess n-3 nonzero latent roots 1 2 3, , , nλ λ λ −L . 

Substituting equation (11) into (9) gives 
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We can find an example of this algorithm in Martin-

Neira et al. [1995]. An alternative algorithm for the 
spectral decomposition approach can be derived using the 
following relational equations. From equation (4), 
rewriting the residuals gives 
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We have, therefore, two relational equations from 

equation (14) as: 
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Using the partitioned matrices and vectors, the quadratic 

form of the residuals can be expressed as: 
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Substituting equation (15) and (16) into (18) gives 
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Furthermore, the following equality can be proved: 
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To compare the computational efficiency of different 

algorithms, we outline three algorithms for the 
computation of the quadratic form of the residuals in 
Table 2. The computational algorithms I and II represent a 
normal and a spectral decomposition approach. The 
computational algorithm III is an alternative approach for 
the computational algorithm II. The computational steps 
are separated into three parts for clarity – common, 
external, and internal. The external part is computed 
before the ambiguity search-verification step. On the 
other hand, the internal part is computed in the search 
loop. Therefore, the computational efficiency of the 
internal part is usually of great concern.  

  
Table 2. Comparison of the computational algorithms. 
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ERROR MODEL FOR THE FILTER THRESHOLD 
 

In general, the threshold vector τ in equation (7) can be 
derived from the quadratic form of the filter equation as: 



 
c≤T -1

ww Q w   (24) 

 
where wQ  is the variance-covariance matrix of w and c is 

a positive constant which can be selected based on the 
probability distribution of w. Therefore, we can determine 
the thresholds with a certain confidence by choosing c at a 
certain confidence level. Then, one simple way to set the 
thresholds is 
 

, 1,2, , 3i wi c i nτ σ= = −L  (25) 

 
where wiσ  is the square root of the ith diagonal element in 

wQ . However, we can recognize in equation (6) that it is 

not easy to establish correctly the variance-covariance 
matrix wQ  and the probability distribution of w. For this 

reason, we have used an alternative approach for the 
quadratic form of the filter equation. In general, the 
ellipsoidal region in 3nR − centered on the estimator x̂  of a 
certain vector x can be expressed as [Giri, 1977]: 
 

ˆˆ ˆ c− − ≤T -1
x(x x) Q (x x)   (26) 

 
where x̂Q  is the variance-covariance matrix of x̂ . The 

family of ellipsoids obtained by varying c (c>0) has the 
same center x̂ , their shapes and orientation are 
determined by x̂Q , and their sizes are determined by c. It 

should be noted that the positive constant c does not have 
probabilistic sense unless the probability distribution of x 
is known. From equation (26), the thresholds are given as: 
 

ˆ , 1,2, , 3i xi c i nτ σ= = −L  (27) 

 
where x̂iσ  is the square root of the ith diagonal element in 

x̂Q . One condition required in this approach is that the 

estimator x̂  should be the unbiased estimator of x; then, 
we can get different thresholds according to the weighting 
scheme of x̂Q . Three cases from (a) to (c) in Table 3 

show the unbiased estimators of x and their error models. 
Because both x and x̂  are probabilistic variables, the 
condition of unbiasedness becomes 
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For each case, the condition of unbiasedness can be 

proved if the following equality holds (more details in 
Teunissen [1998]): 
 

[ ]E round  = 
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Three error models for the filter thresholds (i.e., the 

error models from (a) to (c)) were tested and discussed in 
Kim and Langley [1999]. A rigorous error model, which 
is related to deciding the value of the positive constant c 
in a probabilistic sense, can be derived from equations 
(20) and (24). From these two equations, we can express a 
correct error model of the filter equation w as: 
 

( )1 .−= Ω =
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If the double-difference observation noise e in equation 

(1) has a normal distribution, we have 
 

( )2~ 3,nχ α= −T -1 T -1
wv Q v w Q w  (32) 

 
where α is the level of significance. Therefore, we can 
determine the positive constant c with a certain 
confidence level in accord with α. Table 3 shows the 
summary of the error models for the filter thresholds. In 
each error model, the variance-covariance matrices with 
subscripts are the sub-matrices partitioned from the 
variance-covariance matrix of the double-difference 
observations in equation (1). 
 

Table 3. Error models for the filter thresholds. 
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RESULTS 
 
To test the efficiency of the computational algorithms 

for the quadratic form of the residuals and the 
performance of the error models for the filter thresholds, 
we processed some of the test data recorded at one 
reference station in the Canadian Coast Guard (CCG) 
DGPS and OTF network  (Figure 1 and 2) and that 
recorded simultaneously on board a hydrographic 
sounding ship (Figure 3) at Trois-Rivières, on the St. 
Lawrence River, 130km upstream (southwest) of Québec 
City, on 30 September 1998. Figure 4 shows the tracks of 
the vessel. The data set contains both L1 and L2 
observations recorded at a one second sampling interval 
for two hours in kinematic mode. Baseline length between 
the reference station and hydrographic sounding ship was 
about 40 km. 
 



 

Figure 1.  CCG DGPS and OTF network: coverage of 
the St. Lawrence River. 

 

 

Figure 2.  Trois-Rivières DGPS reference station. 

 

 

Figure 3.  GPS-equipped hydrographic sounding ship. 

 
The results of our analyses are presented in two parts: 

the floating point operation count (FLOPS) test of the 
computational algorithms for the quadratic form of the 
residuals; and the performance of the error models for the 
filter thresholds. 
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Figure 4.  Vessel tracks. 

 
Computational Algorithm Efficiency 
 

Using each computational algorithm for the quadratic 
form of the residuals in Table 2, the FLOPS test was 
conducted to compare the efficiency of the algorithms. 
Table 4 shows the test results. Test conditions were given 
as: 1) three-level search loops were built; 2) the search 
range for each search level was given as 2 m, therefore, 
twenty-one candidates were given for each search level; 
3) seven satellites were used. 
      

Table 4. FLOPS test results 
 

 I II III 

Common 1,588 

External 868 5,278 1,040 

Internal 1,917,027 722,358 694,575 

Total 1,919,483 729,674 697,203 

 
 

The normal computational algorithm I gave the worst 
computational efficiency and the alternative algorithm III 
for the spectral decomposition approach gave the best 
results. Compared with the normal algorithm I, the 
efficiency of the spectral decomposition algorithm II was 
improved by about 62%. In the case of the alternative 
algorithm III, the efficiency was improved by about 64%. 
In both the external and internal computation parts, the 
alternative algorithm III was superior to the spectral 
decomposition algorithm II. We can say therefore, that the 
alternative algorithm III is the most efficient algorithm of 
the three algorithms tested for computing the quadratic 
form of the residuals no matter which conditions are 
given. 
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Figure 5.  Performance of the filter thresholds: the x-axis in each panel represents GPS time in seconds (from 325820 
to 329820); the y-axis represents the filter thresholds in cycles (from –0.2 to 0.2); solid lines are the filter thresholds 
for each error model; and dots are the values of the filter equation. 

 
 
Error Model Performance 
 

To compare the performance of the error models, the 
filter thresholds were computed using equation (25) and 
(27) for each error model in Table 3. The positive 
constant value c was determined from the chi-squared 
distribution at the 95% confidence level with n-3 degrees 
of freedom (i.e., we assumed that the double-difference 
observation noise follows the normal distribution.). As 
was mentioned previously, however, this choice of c 
cannot guarantee the same confidence level to the error 
models from (a) to (c) in Table 3, because these error 
models are not based on a rigorously-defined probability 
distribution. Even though this limitation exists, we 
considered, as a matter of convenience, that the positive 
constant c has the same confidence level for all error 
models in our investigations. 
 

Figure 5 shows how well the filter thresholds (solid 
lines) bound the values of the filter equation (dots). All 
error models except for the first error model performed 
well according to the noise level of the filter equation. 
Furthermore, the filter thresholds for the first error model 
were almost constant in these examples. 

 
To investigate the performance of the filter thresholds in 

detail, we plotted the filter thresholds for each error model 
and for the double-difference observations of PRN 8 and 

9 separately in Figure 6. We need in general an error 
model that protects all the values of the filter equation for 
true ambiguities in the given confidence level, which at 
the same time is also efficient. The third error model 
satisfies these criteria as shown by the examples in Figure 
6. On the other hand, it is evident that the first error model 
does not satisfy these criteria. Furthermore, the first error 
model did not react well to the noise level of the filter 
equation. 

 
For the second and fourth error models, our 

investigations have shown that both of these error models 
have similar characteristics (sometimes, almost identical). 
In fact, the equation for the fourth error model can be 
developed in a similar form to that of the second error 
model in Table 3. According to the partitioned design 
matrices, both error models would be almost identical. 
The performance of these error models is not much 
different from that of the third error model as shown by 
the examples in Figure 6. 

 
CONCLUSIONS 

 
The work reported in this paper has been a consecutive 

study of our previous work reported in Kim and Langley 
[1999]. Two aspects – error models for the filter 
thresholds and computational algorithms in the search-
verification step – have been investigated in detail. 
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Figure 6.  Performance of the filter thresholds: the x-axis represents GPS time in seconds (from 325820 to 329820); 
the y-axis represents the filter thresholds in cycles (from –0.2 to 0.2). 

 
 
For the computational algorithms of the quadratic form 

of the residuals in Table 2, we found that the alternative 
algorithm III for the spectral decomposition is the most 
efficient. Regarding the error models for the filter 
thresholds in Table 3, we found that three of the four error 
models performed well, i.e., the filter thresholds bounded 
almost all the noise signals of the filter equation. Only the 
first of the four performed poorly. We also found that the 
second and fourth error models have similar behavior. 
Because of the meaning of the positive constant c, we 
have considered the fourth error model as the most 
rigorous approach in our investigations. 
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