L2C Signal Assessment Using IGS L2C Network

Networks of Centres of Excellence Liliána Sükeová¹, Marcelo C. Santos¹, Richard B. Langley¹, Rodrigo F. Leandro^{1,2}, Réseaux de centres d'excellence

Okwuchi Nnani¹, Felipe Nievinski¹

¹Geodetic Research Laboratory, Department of Geodesy and Geomatics Engineering, University of New Brunswick,

Fredericton, Canada

²Trimble Terrasat GmbH, Germany

Research carried out under GEOIDE NCE Project: Next-generation algorithms for navigation, geodesy and earth sciences under Modernized Global Navigation Satellite Systems

INTRODUCTION

- The United States has started an extensive modernization program to provide better service to GPS users.
- A new open civil signal is available on L2 frequency (L2C), currently broadcast by Block IIR-M satellites:

PRN 17 operational since: 2005 Dec 16 (launched 2005 Sep 26) PRN 31 operational since: 2006 Oct 12 (launched 2006 Sep 25) PRN 12 operational since: 2006 Dec 12 (launched 2006 Nov 17)

* The International GNSS Service (IGS) has organized a network of L2C signal tracking stations (L2C Test Network) which has been established in different places in the world.

- Data is available in compact RINEX format from CDDIS ftp, with L2C data starting intermittently on day 2005:294 (21 Oct 2005) to date
- Receivers capable of tracking the modernized L2C signal have been developed and provided by a number of manufacturers, such as Trimble, NovAtel, Septentrio, Leica and Topcon.

Receiver types used in the L2C Test Network for stations:

TRIMBLE NetRS FAIC HARC KOKC MCMC NYAC PGC5 UNAC BHAO OURI RIOP ROSA

TRIMBLE NetR5 UNB3 GANP

OBJECTIVES

- The main objective of the investigation is to analyze the L2C signal SNR values, multipath and noise level of the observations.
- Other objectives are to maintain an L2C-capable station, UNB3, using Trimble R7 and Trimble NetR5, and to test the receivers' firmware versions in terms of L2C signal tracking capabilities.

DATA COLLECTION AT UNB

Trimble R7: installed 11 Jan 2006 - removed 10 Oct 2006; Trimble NetR5: installed 02 Nov 2006 - currently operational; data uploaded to

ftp://cddis.gsfc.nasa.gov/gps/data/l2ctest/hourly/2007

RESULTS: SNR ON L1

SNR ON L2

Max SNR on L1: PRN17-50.00, PRN31-49.00 and PRN12-51.25 (dB-Hz) Max SNR on L2: RRN17-52.75, PRN3-51.50 and PRN12-49.25 (dB-Hz)

METHODOLOGY

A pseudo-observable which contains only receiver noise and multipath effects is created by differencing the raw pseudorange measurement, and the raw carrier-phase measurement, both of them with their ionospheric delay removed.

The L2C code has an effective chipping rate of 1.023MHz. For noise and multipath performances, the L2C code behaves similarly to a BPSK modulation at 1.023MHz. This means, that the same level of noise and multipath is expected on C/A and L2C (Simsky et al., 2006)

C/A and L2C code multipath and noise values

The standard deviations of multipath and noise

10-degree elevation angle bins, from 0 to

- the four stations from the L2C Test Network;

Data used for analysis

0000

- four stations: UNB3, GANP (R7)
- FAIC, UNAC (NetR5) 24 day data from 1st Dec 2006
- 24th Dec 2006 to
- for each day separately (i);
- for the entire 24-days period as a whole (ii)

- the modernized satellites; and

Example (PRN 17): (ii) dots, (i) error bar expanded 2x its magnitude

in two ways:

Computed values

values for each of:

90 degrees (9 bins);

C/A and L2C codes

for each epoch.

C/A and L2C code multipath and noise standard deviation, stations UNB3 (top) and GANP (bottom)

RESULTS AND THEIR ANALYSIS

elevation angle dependence of the noise

- and multipath standard deviations (std) higher error bars in the first elevation angle bin can be explained by a smaller
- number of observations Stations UNB3 and GANP (Trimble NetR5) results meet the expectation of similar
- noise and multipath of C/A and L2C code Stations FAIC and UNAC (Trimble NetRS)
- results DO NOT meet this expectation, L2C code noise and multipath std are apprx. 1.5x larger than the C/A code noise and multipath stds.
- the reason of higher noise and multipath level of the L2C code can be explained by the firmware version used in Trimble NetRS

C/A and L2C code multipath and noise standard deviation, stations FAIC (top) and UNAC (bottom)

- CONCLUSIONS SNR of the L2C code is
 - higher than the SNR of the P2 code, reaching similar values as those of the C/A code
 - EVEREST, Trimble Multipath Mitigation Algorithm was enabled on both frequencies for Trimble NetR5, but was NOT enabled on L2 for Trimble NetRS receivers: (receivers' firmware version issue)