

Next-generation algorithms for navigation, geodesy and earth sciences under modernized Global Navigation Satellite Systems (GNSS)

Marcelo Santos¹, Richard Langley¹, Rock Santerre², Marc Cocard², René Landry³, Rodrigo Leandro^{1,7}, Spiros Pagiatakis⁴, Sunil Bisnath⁴, Ahmed El-Rabbany⁵, Herb Dragert⁶, Pierre Héroux⁶ and John Paul Collins⁶

¹University of New Brunswick, ²Université Laval, ³Ecole de Technologie Supérieure, ⁴York University, ⁵Ryerson University, ⁶Natural Resources Canada, ⁷Trimble Terrasat GmbH

Introduction: The project on "Next-generation algorithms for navigation, geodesy and earth sciences under modernized Global Navigation Satellite Systems (GNSS)" has been under development in the scope of the GEOIDE Network. In this presentation we display an overview of some of the activities which have been taken place under this project. They involve: (a) Processing and analysis of real modernized GNSS data (L2C) as well as simulated data; (b) Designing algorithms for precise point positioning (c)Study of the improvement of ambiguity resolution with modernized GNSS signals; (d) Development of a PPP software with options to calibrate satellite and receiver phase biases

Perugia, Italy, 2 – 13 July, 2007