
A Framework for Real-time GNSS Software

Receiver Research

D.A. Godsoe, University of New Brunswick, Canada

M.E. Kaye, University of New Brunswick, Canada

R.B. Langley, University of New Brunswick, Canada

BIOGRAPHY

Douglas A. Godsoe is a Ph.D. student in the Department

of Electrical and Computer Engineering at UNB. Since

completing his B.Sc. in electrical engineering from UNB

in 1993 he has been working in enterprise application

architecture and development for a variety of industries.

His current research interests include electronics and

digital systems, real-time applications, embedded

hardware-software co-design, and digital signal process-

ing.

Mary E. Kaye is an associate professor in the Department

of Electrical and Computer Engineering at UNB where

she has been teaching and conducting research since

1979. She has a B.Sc. in electrical engineering from UNB

and an M.Eng. from Carleton University, Ottawa. Prof.

Kaye has been active in the development of embedded

systems with real-time applications in the areas of control,

signal processing and communications.

Richard B. Langley is a professor in the Department of

Geodesy and Geomatics Engineering at UNB, where he

has been teaching and conducting research since 1981. He
has a B.Sc. in applied physics from the University of

Waterloo and a Ph.D. in experimental space science from

York University, Toronto. Prof. Langley has been active

in the development of GPS error models since the early

1980s and has been a contributing editor and columnist

for GPS World magazine since its inception. He is a

fellow of the International Association of Geodesy, the

Institute of Navigation (ION) and the Royal Institute of

Navigation. He was a co-recipient of the ION Burka

Award for 2003 and received the ION Johannes Kepler

Award in 2007.

ABSTRACT

This paper outlines the architecture and on-going

development effort of a modular software-based real-time

GNSS receiver research framework using the Microsoft
.NET Framework and the C# programming language. A

pipelined signal-processing model is used to address key

timing and inter-module synchronization challenges

inherent in working with the parallelism required to

simultaneously receive and process four or more satellite
signals. An extensible interoperability layer provides

clearly defined functional interfaces and simplifies the

integration of existing hardware and software components

with any stage in the signal pipeline. Various aspects of

front-end hardware design requirements, as well as new

acquisition and tracking mechanisms, are identified and

discussed.

INTRODUCTION

There are many expected and anticipated advantages of

software GNSS receivers over conventional hardware

implementations. Among these benefits are lower cost,

greater flexibility, easier updating or upgrading mech-

anisms, and better adaptability for supporting new signals

and frequencies. Software receivers serve as fertile

ground for researchers exploring the exciting possibilities
of the development and testing of new signal processing

techniques and ideas. Satisfying the computational

requirements for a real-time software receiver has focused

much of the current research and development effort on

innovative algorithms aimed at reducing the necessary

processing complexity. For the purposes of proof-of-

concept testing, many of these ideas have been

demonstrated using some combination of field pro-

grammable gate arrays (FPGAs) and commercial digital

signal processors (DSPs) with software written in

assembly language. PC-based demonstrations that take
advantage of the MMX/SSE (streaming SIMD—single

instruction, multiple data—extensions) instruction sets

provided by the Pentium-4 microprocessor have required

the use of optimized assembler code for their

implementations.

While perhaps reconfigurable, hardware definition

languages (HDLs), such as VHDL (very high speed

integrated circuit hardware description language) or

Verilog, are intended to describe hardware operations and

are not widely considered to be software as the compiled

binaries are not executed on a general purpose processor.

Solutions based on a system-on-programmable-chip

(SOPC) philosophy, using one or more soft-core

processors combined with various application specific

logic-blocks, bring the features and performance benefits
of both hardware and software. However, they also suffer

all the challenges of hardware and software systems, as

well, in that they are often difficult to customize,

requiring the support of a mix of non-integrated vendor-

specific tools and components. Furthermore, solutions

built from specialized DSP chip-sets using hand-

optimized assembly languages and esoteric development

tools require specialized software skill-sets to reproduce.

These systems represent more of a one-off customized

hardware implementation approach and generally fail to

satisfy the adaptability and flexibility benefits expected

from software receivers.

Using readily available tools and high-level programming

languages makes the technology more accessible to

would-be system implementers and brings the desired

software receiver goals closer to realization. Beneficial

side-effects include having access to larger data storage

devices, network connectivity and XML-based web-

service integration, links to GIS and mapping

information, and support for rich application functionality

that is difficult to provide through low-level code only.

The expected benefits of this framework development

will be to establish a whole context for software receiver

research and to provide a unified view of a software

receiver implementation using tools and technologies that

encourage the development of diverse feature-rich

applications. Support from the .NET Compact Framework

makes the move to mobile devices based on embedded

versions of Windows a straight path to hand-held

applications.

SOFTWARE & RECEIVERS

Since without additional context, software can mean

different things to different people, for this paper software

is considered to be a collection of algorithms expressed in

a programming language that is compiled for execution

on a general purpose processor. However, there are many
types and models of microprocessors available, as well as

different run-time configurations of hardware and

software supporting various levels of operating system

integration. For practical reasons, the topics of discussion

will be restricted to the consideration of a PC-based

computing system with an Intel Pentium-4 class of

processor running a recent version of Microsoft Windows

and the .NET Framework.

To refine scope still further, the murkiness of real-time

and its accompanying modifiers of hard, soft, near, and

firm needs to be clarified. Here, the critical distinction

that is made between real-time and post-processing is that

the real-time system has only the brief interval between

sample arrivals to evaluate a new data point. Where the

post-processing system has the advantage of being able to

replay and ―look‖ at the signal stream multiple times, the

real-time system must process a sample before it is gone.
Block-oriented real-time processing techniques must

digest a block of samples in a time interval given by the

product of the block length and the sampling period.

LNA

Quadrature

down-

converter

ADC
Device

Interface

Acquisition Tracking

Navigation Data

Extraction

(Demodulation)

Ephemeris &

Pseudorange

Hardware

Software

Navigation

Solution

Figure 1—Software GNSS Receiver

As shown conceptually in Figure 1, the traditional model

of a software receiver consists of a hardware front-end
that performs signal pre-amplification and intermediate

frequency (IF) down-conversion prior to sampling and

analog-to-digital conversion. The resulting data-stream is

then processed further by subsequent software stages. The

obvious goal with a software receiver is to put as much

processing functionality as possible into software modules

in order to maximize the overall system flexibility and

potential cost savings. Doing so also allows for, among

other things, easier development and testing of methods

for multipath amelioration, weak-signal acquisition and

tracking, and support for new signals and spreading

codes.

Several non-commercial research-oriented reference

implementations of post-processing receivers are

available, and their number seems to be growing daily.

When combined with a low-cost hardware front-end,

MATLAB versions such as [2] provide an excellent

starting point for the exploration and study of the

processing mechanics involved with signal acquisition,

tracking, and navigation message recovery. However, a

MATLAB application operating on a Java virtual

machine is a non-ideal solution architecture for the basis
of a real-time GNSS receiver. Versions developed in

C/C++ and assembler attempt to address environment

performance issues, however C and native assembler

don’t interoperate easily with other development

languages. Building useable high-level applications in the

C language is a time-consuming endeavor.

In a post-processing receiver application, sampled data is

typically first stored to a file that is then used as an input

to the system modules. The input data represents a static

snap-shot of the in-view satellites in the sky at the time

the sample was recorded. While the acquisition process

may subsequently take hours to run, the results obtained

are valid for the life of the file; if the file contents or

analysis software haven’t changed, neither should the

processing results. Inter-module synchronization is

achieved by running dependent tasks sequentially, fully
completing one operational step before starting another.

So, for example, satellite tracking does not begin until the

acquisition stage has analyzed the signal file and

produced the output of a collection of objects that can be

tracked.

Conceptually, real-time and post-processing software

receivers share the same basic processing stages, however

receivers attempting to operate in real-time must analyze

a newly arrived individual data point in the time interval

between sampling instances. The code has only a small

moment of time to determine the impact this new data
will have on the receiver state and output. Real-time

operation requires the synchronization of multiple

overlapping dependent tasks with tight completion

deadlines that are executed on a predictable schedule. If

an acquisition stage precisely determines the initial code

delay of a signal to be tracked, but the handoff between

acquiring the signal and the tracking process takes an

unpredictable or excessive amount of time, the change in

signal with the passage of time invalidates the result and

necessitates re-acquiring the signal all over again.

The current approach towards realizing real-time software

receiver operation most often involves optimizing the

implementation of the various receiver sub-modules to

improve execution performance. There are two drawbacks

to this situation, though. Firstly, optimizing individual

isolated receiver pieces leaves the individual optimizer

feeling rather isolated. Determining the performance gain

from enhancements in one component becomes difficult

without the ability to easily integrate the implementation

back into a working system for comparison purposes.

Secondly, while overall performance is important, it alone

is not the whole picture in meeting the needs of a real-
time system.

Achieving real-time operational characteristics will

require more than an optimization effort on existing post-

processing algorithms. Even in a multiple-processor-core

PC environment, performing calculations in long-running

iterative loops pins a workload to a single processor while

the others remain essentially idle. To avoid this situation

and to maximize the ability of the system to schedule

execution resources in a fine-grained manner requires the

use of a carefully designed multi-threaded application.
Managing and synchronizing thread execution and cross-

thread interactions becomes an essential element in the

software receiver solution architecture. Additional

considerations regarding such things as the timing of the

transition between signal acquisition to tracking, tracking-

loop stability analysis, and the implications of the front-

end sampling-rate limitations must also be evaluated.

Post-processing receivers have the advantage of being

able to work away on the signal data starting from

different initial offsets and cross-comparing the results to
determine the location of navigation data-bit edges. A

real-time receiver must make these determinations along

the way, and somehow compensate for timing synch-

ronization errors without corrupting the received navi-

gation message. The more sophisticated the edge detect-

ion and timing extraction algorithms become, the less

likely it is that they will be able to be executed under the

real-time constraints.

Both varieties of software GNSS receivers, in general,

suffer from basic implementation challenges that would

be straightforward to overcome in hardware-based
designs. With hardware receivers, inter-module synch-

ronization is readily achieved by connecting dependent

components to a common clock source. Measuring in-

coming signal frequency and phase, implementing

feedback control, and the processing of the integro-

differential equations present in tracking-loop filters all

occur quite naturally with coils and capacitors in

hardware, but require many lengthy calculations when

performed in software. Even a basic shift-register

generator can involve complex code and large data

structures to implement efficiently in software. When
necessary, depending on the discriminator function used,

the synchronization of a software phase-lock loop (PLL)

with the output of a data-bit recovery demodulator creates

another challenge. In this case, it is the hardware that is

soft and the software that is hard.

Happily, there are things that are much simpler to achieve

using software instead of hardware. Providing better and

easier support for making changes to functionality imple-

mentation is one of them. Visualizing the internal system

state through introspection and reflection during testing

and debugging in an integrated development environment
is another. Software implementations allow the direct

access to observable system states within the receiver that

would otherwise require intrusive instrumentation to

realize in hardware.

RELATED WORK

General background information on the design and

operation of GPS receivers can be found in [8] and

broader but related details on spread-spectrum comm-

unication systems in [5]. Additional information on

software signal processing methods are provided in [2],

[15] and [17]. These references develop some of the

necessary theory for software-based GNSS receivers.

There are so many software receivers of the post-

processing non-real-time variety that a comprehensive

evaluation of the nature and characteristics of all of them

would be practically impossible. Nearly any programming

language that can open a file and perform basic

mathematical operations can be used for the development

of these projects. A good overview of the current state of

software GNSS receivers can be found in reference [1]
and issues with their testing protocols and challenges are

covered nicely in [9].

The variety of MATLAB-based solutions, such as those

presented in [13] and included in [2], like the examples

provided by [15] and [17], are post-processing receivers

and possess no real-time design intentions or

characteristics.

There are also highly optimized receiver components that

are written in some combination of assembler and C++

claiming real-time performance benefits. However the
designs and methods of implementation of test-beds such

as [4], or the software-defined-radio receivers for GPS

and GNSS discussed in [11] and [3] are cobbled together

from the complex interconnection of a veritable Jenga®

tower of hardware-dependent system prototyping comp-

onents. Solutions such as these are difficult to repeat and

customize, and it is even harder to incorporate their

presented generalized conclusions into a specific

application development and testing environment.

Any relevant discussion on threading, parallelism, and the
required level of inter-process communication and data

structure synchronization are conspicuously absent from

the vast multitude of emerging real-time software receiver

implementation papers.

THREADS & PROCESSORS

A thread is a conceptual construct that is used to model

the path a computer processor takes when performing the

instructions contained in a set of code in the form of a

program. Threads represent a basic unit of software

execution.

The state of a thread consists of all the CPU registers—

instruction counter, stack position, status flags,

accumulator and other general purpose registers—that

hold the current values of an executing program’s internal
variables. State reduction is achieved by externalizing

these internal registers to reserved areas of system

memory where they can be saved and later retrieved.

Multiple blocks of memory can be used to simultaneously

maintain the state of several threads, which gives rise to a

multi-threaded run-time environment. When one thread

can no longer make progress or if another more important

(higher-priority) thread needs to run, the current thread’s

state is stored and the former state of the next thread

ready-to-run is loaded and the processor resumes

execution.

By managing multiple threads in such a manner, a single

high-speed processor can appear to perform several tasks

in parallel. Of course, the resulting parallelism is in

appearance only in that one processor may only execute

one thread’s instructions at a time. To improve

performance, multiple processors may be used to execute
an application, where each available processor manages a

different set of threads for execution.

A thread is a synthetic construct that has been invented in

order to optimize the utilization of a limited number of

processor clock cycles. If a thread is waiting for an

external or shared resource, such as the completion of an

I/O operation or reading from a comparatively slow

memory location, rather than wasting time spinning (or

idling) the current thread it is better to do other work

instead. A context switch is performed by the operating

system whenever progress is no longer being made on the
current thread’s execution while it waits to acquire a

resource. Threads provide, when properly used, a means

of creating fine-grained independent workers for long-

running or background activities.

Scheduling is the act of determining the order in which

the threads (or tasks) within a process are made running

on the CPU. A reliable real-time system implementation

requires a deterministic scheduler; a thread that is

scheduled to begin executing must do so in a predictable

manner and it must complete its work in a fixed amount
of time.

There are many factors that can influence the length of

time a particular task needs in order to complete its work.

Even without thread interactions for non-processor

resources, factors such as differences in the instruction

counts for conditional code branches, iterations of loop-

counts based on external variables, the order in which

memory has recently been accessed, and the specific

processor architecture all influence the number of clock

cycles (i.e. time) required for a task to complete. As a

result of these extrinsic variations, statistics on the best-
case, worst-case, and average completion times need to be

collected and used in some way in order to evaluate the

viability of a particular schedule.

The application development methodology discussed in

[14] stresses predictability and flexibility in real-time

system design. Implementations utilizing processor

architectures that are Complex Instruction Set Computer-

based (CISC) with their variable instruction lengths and

pipeline depths are difficult to analyze and evaluate for

worst-case execution times. Furthermore, the times
arrived at would be large compared with average

execution times, yielding an overly pessimistic schedule.

On the other hand, favoring predictability and low-

variance, the philosophy of simpler designs in Reduced

Instruction Set Computer (RISC) architecture machines

makes the performance characteristics easier to analyze.

For the PC, the Intel Core 2 Duo, a CISC-based pro-

cessor, provides two logical processors in a physical

package. Each processor has a separate execution core
and first-level (L1) cache. Both cores use a shared

second-level (L2) cache, but the full capacity of this cache

can be used by one logical processor if the other processor

is inactive. The Core 2 Quad processor consists of two

identical copies of the dual-core modules. Each logical

processor in both the dual and quad core packages

accesses the outside world through a shared system bus.

The pipelined micro-architecture of the Intel Core

contains [6]:

• An in-order front-end that fetches instruction streams

from memory. Four instruction decoders handle up to

five instructions per cycle. Decoded instructions

(called μops) are fed to an out-of order execution unit

four at a time.

• An out-of-order execution engine that issues up to six

μops per clock cycle. The μops are re-ordered to

execute as soon as operand sources are ready and

execution resources are available.
• An in-order instruction retirement unit that ensures

μop execution results are processed and completed in

a sequence consistent with the original program

order. A peak instruction retirement rate of up to four

μops per cycle can be attained.

Each processor core is able to fetch, dispatch, execute,

and retire up to four instructions per system clock cycle.

When an instruction sequence causes the processor to
wait for a shared resource, the execution core performs

other instructions rather than sitting idle. For semantically

correct execution, the results of instructions must be

committed in original program order before they are

retired.

Due to the high level of pipelining in the processor,

instruction timing data from Intel is specified in the form

of latency and throughput values. Latency is the number

of clock cycles necessary in order for the execution core

to complete the execution of all of the μops that form an
instruction. Throughput refers to the number of clock

cycles required to wait before the same instruction can be

accepted again. These values are implementation depen-

dent in that they can vary between different core models.

Other factors affecting these timings can include:

• The memory type the instructions came from and any

cache replacements or memory write-backs that are
subsequently required.

• Activities on other cores, what instruction sequences

they are executing and have recently completed.

• Code optimizations across all other running threads.

• Whether the processor is operating in 32-bit or 64-bit

execution mode.

As a result of these variations, the often-used means of

determining total execution times by summing the clock

cycle counts for a series of instructions is not valid for a

modern superscalar processor.

“Due to the complexity of dynamic execution and out-of-

order nature of the execution core, the instruction latency

data may not be sufficient to accurately predict realistic

performance of actual code sequences based on adding

instruction latency data.” [6]

Since reliable and precise clock-cycle counts for

instruction execution times are not available, results

derived from generalized assumptions on how long

individual operations take are inadequate to predict

required performance levels. Statistical measurements on

execution times gathered with an application profiler must

be used instead. The outcome of such an analysis effort is

a stochastic schedule—ranges of probability—that is only

valid for a given execution environment and instruction

sequence, making it impossible to accurately determine

the process run-time duration.

Of course, it would also be naïve to assume that a quad-

core processor has four times the capability that a single-

core processor would have. The levels of parallelism

implicit in the algorithms and the amount of synchro-

nization overhead required for their execution limit the

potential performance gain possible with multi-processor

systems. In general, increasing the number of processors

does not proportionally increase the processing per-

formance of the system, depending on the degree to which

portions of the application can be executed in parallel.

Assuming a 50% parallel workload, [6] calculates the
expected performance improvement using two physical

processors to be only 33% compared to using a single

processor, with four processors providing no more than a

60% improvement over a single processor. In practice, it

can be very difficult to determine with any certainty the

actual degree of parallelism present, since the final

application that runs is often some mix of user, library,

and operating system code. However, improper use of

thread synchronization can reduce the effective level of

parallelism and diminish the potential performance gain

through processor scaling.

With a hardware-based design, getting two or more

modules to execute in-step with one another is basically a

matter of running wires from their respective clock inputs

to the output of a common clock source. Similar

synchronous behaviors in software are much harder to

achieve; it is very difficult to guarantee that multiple code

modules will run simultaneously with a high-degree of

timing precision. In single-processor multi-threaded

environments, concurrent execution is obtained by

interleaving the instructions from different threads

according to some schedule. With a multiple-processor

solution, multiple threads may run together over time, but

predicting and guaranteeing their short-term temporal

behaviors and interactions are critical and non-trivial
design challenges.

Unanticipated process interactions across shared data

structures can cause unpredictable, seemingly random,

results. The manifestation of these interactions most often

comes in the form of spurious data corruption and system

crashes. Debugging and proactively eliminating the side-

effects from poorly behaved threads requires a great deal

of time and testing in order to achieve a satisfactory level

of application performance and reliability.

The end result of attempts to characterize and manage the
vagaries of multiple interacting threads is the realization

that achieving some measure of real-time software

receiver operation will require much more than additional

processors and complex algorithm optimizations.

RECEIVER DEVELOPMENT FRAMEWORK

The GNSS Receiver Development Framework project has

been designed and developed to address the issues of

thread-management, inter-process communication, and

module synchronization associated with the levels of

parallelism required for real-time software-based GNSS

receivers. The main goals of the framework’s object-

oriented design are

• to be developed using a modern high-level language

with tools that are intended for the implementation of

feature-rich applications;

• to provide a modular component model that supports

a high-degree of reuse through inheritance and poly-

morphism;

• to integrate with other 3rd-party hardware and

software components in as simple a manner as

possible;

• to act as an extensible baseline receiver reference.

Serving as the focal point for customization and

functional composition, the receiver development

framework provides the essential aspects for object

creation (instantiation), system orchestration, signal

detection, synchronization, and tracking. Unlike off-line

post-processing tools and utilities, the framework is

intended to deliver the critical performance characteristics

necessary to achieve real-time receiver operation.

An important aspect of the framework’s design is prov-

iding for the integration of external hardware and soft-

ware components in a seamless and consistent manner.

Doing so allows for the immediate reuse of existing

solution pieces, while simultaneously supporting the

externalization of any newly developed features. As such,

receiver algorithms may first be developed and tested as

software within the framework and then migrated into

hardware representations that can be hooked back into the

receiver object model for further testing and evaluation.

The receiver framework supports the development and

integration of toolkits of a variety of implementation

types for each component category. Baseline performance

measurements and operational characterizations with one

implementation strategy can be made and used for direct

comparison to alternate methods for benefit evaluation.

By leveraging the advantages of object-oriented design

techniques, comparisons can be made with minimal code

changes simply by overriding the implementation of a

class virtual method and invoking the base-method at run-

time.

The desire in the creation of the receiver framework was

not to refine or improve upon existing signal analysis

algorithms, but rather to give them a better place to live.

The longer-term vision is to produce a number of Visual

Studio project templates that may be used as starting

points for receiver development. It was decided to avoid

basing the design on the capabilities of toolkit-centric

scripting languages, such as MATLAB, for the previously

mentioned performance issues. Of course, this decision

carries a few consequences, not the least of which are the

many features of convenience, such as graphing and
plotting functionality, and frequency domain filters and

transforms that are immediately absent. While the product

of this framework is not intended to be simply another

signal-processing toolkit or a collection of library

components that can be incorporated into other

applications, it does provide implementations for many of

the essential signals-related transforms and mathematical

operations. Simple graphing objects have also been

developed that can be placed within the user interface as

visual elements. Data collected from the receiver may

also be exported and analyzed separately by other

applications as required.

The reference implementation provided is only one way,

not necessarily the best, of achieving a signal detection

and tracking objective. However, it is the generalized set

of interfaces and abstract classes that give the framework

its flexibility and offers the greatest value to its con-

sumers. The design of the framework establishes the

philosophy of defining an interface, declaring an abstract

base that implements it, and creating derived types that

satisfy solution requirements. The aim of the framework

is to serve as a development guidance reference for how
receiver applications should be structured and assembled

to achieve the most worthwhile results in the shortest

timeframe with the greatest opportunity for reuse and

extension.

Analog

Front end

Signal Device

Driver Interface

Acquisition &

Tracking Classes

PRN Code

Generators

Data Demodulator

Components

Navigation

Interfaces

Atmospheric

Model

Descriptions

Interop Support

Receiver Development

Framework

External Libraries

and Applications

Thread

Management

Frequency

Domain Operators

Common Type

Definitions

Receiver

output

Figure 2—Receiver Development Framework

The top-level system diagram is shown in Figure 2. Each

box in the development framework diagram represents a

collection of related pieces that combine to produce the

expected output from the corresponding module. All that
is necessary to change or extend a component is to

implement the classes of objects that support the required

interfaces and methods. While the greatest flexibility will

be achieved when all of the components are developed in

software, there is nothing in the overall design that

precludes the substitution of a specialized hardware

device in place of a class method or an entire class

implementation, as long as the hardware fully supports

the expected input and output parameters of the method

being replaced. It’s for this reason that the system was

developed in such a way that it more closely resembles
the block diagrams of hardware that it represents.

The object-oriented design takes advantage of the

reusability available through inheritance and poly-

morphism. Types that are derived from a common base-

class can be thought of as new implementations of the

base-class functionality. Invokers see no difference in the

calling semantics, and implementers can leverage any

suitable functionality existing in the base-class. Reuse

exists, therefore, at two levels.

The analog front-end is used to tune, band-limit, and
sample the incoming signal so that it can be brought into

the system in the form of a stream of binary data. It is

connected to the framework through a set of signal device

driver interface components that are used to structure the

properties and attributes of the device data source into a

format that is compatible with the dependent sub-systems.

Interoperability support features allow previously

developed functional libraries and external hardware

devices to be tied into the system in a uniform and

consistent manner without a great deal of effort or
intellectual overhead. Although dependent on the

polymorphic behavior of the framework’s object-oriented

design, the interoperability layer allows for high-degrees

of reuse and application flexibility.

While not necessarily an integral part of the receiver

framework in that they borrow from and must be

supported by operating system constructs, the thread

management components represent a collection of work-

queues and synchronization primitives that are required to
help ensure the desired real-time performance objectives

of the system. Events and delegates available to other

system components are considered part of thread

management services, and patterns for their use are

provided.

The frequency operators section refers to the frequency-

domain essentials of signal processing. These include

FFT/DFT functions and their inverses, filtering functions,

and other operations necessary to transform input signals

into useable data. Reference implementations have been

provided as parts of the receiver framework; however,
these can easily be replaced with alternate software

algorithms or with customized external hardware blocks.

Classes and supporting interface specifications for items

that are commonly encountered or shared between

operations such as the Complex data type and system

status enumerations are provided in the common type

declarations of the receiver framework. Data types and

structures that bridge between functional modules can be

considered as part of the common type library.

Pseudo-random noise (PRN) code generators are required

to reproduce an exact replica of the sequence of binary

chips that was originally used by the transmitter to spread

the signal. Only the GPS C/A codes are currently

provided, but different code types and generating methods

are supported by extension.

The signal acquisition and tracking module contains the

classes that are responsible for finding the presence of

PRN sequences in the received signal and keeping the

locally generated sequences in synchronization. The

acquisition process attempts to discover a transmitted
sequence by cross-correlating the incoming signal with

each possible spreading code while looking for a peak in

the correlator output. After signal acquisition is

completed, a collection of objects is returned for

tracking—each object representing a detected PRN

sequence in the input signal. Object models for a PLL, a

delay-lock loop (DLL), a numerically-controlled

oscillator (NCO), and a reference time-base are provided

as part of this module.

The data demodulator components contain the code that is
required to extract, verify, and process the recovered

navigation data message. Any required data formatting

and validation functions may be included in this block as

well.

THE PIPELINE COMPONENT MODEL

An often used construct of high-performance computer
architecture is the sequential pipeline, where functional

blocks are linked together in a chain and driven by a

common clock. Each block in the chain achieves some

measure of work in the time interval between clock pulses

(ticks) contributing to the overall operation. New oper-

ations are started at the beginning of the pipeline while in-

progress operations occur at successive stages. The output

of one block becomes the input for the next, and the final

result is taken from the output of the last stage in the

sequence. In hardware, the clock source is usually the

output of a local oscillator or some other reference signal

that is physically wired to a control point on each stage
that latches the input data between clock transitions.

S1 S2 S3 SN

Common

Event

Source

Input Output

One event every T

seconds

Event

Handler

Event

Handler

Event

Handler

Event

Handler

Figure 3—Synchronous pipeline model

Without access to a shared time reference, pipelines are

difficult to build using software constructs. However, the

same pipeline structure can be achieved in software

applications with events and event-handlers. To do so

requires event-handlers from multiple object instances be

assigned to respond to a single shared event-source. The

shared event-source serves an equivalent role as the

common clock in the hardware version, such as the

configuration shown in Figure 3. The throughput benefit

of this model results from the more evenly distributed
work-load due to the processing that occurs between the

event-trigger intervals.

Unfortunately, with software-based events, the operating

system makes no guarantee as to the order of delivery of

the event signals to the various subscribed handlers. The

order in which the event-handlers are registered with the

event-source can influence but not fully determine which

handlers will receive the event notification first. If the last

stage is triggered to run out of sequence with the rest of

the pipeline, the resulting output would be a repeat from
the previous cycle and obviously an error. A synchronous

pipeline requires semaphores, wait-handles, or other

shared synchronization primitives to reliably execute in

software, each of which negatively effects system

performance and increases implementation complexity.

The receiver framework makes use of an innovative

event-driven asynchronous pipeline model for the

processing activities involved in signal acquisition and

tracking, as shown in Figure 4. Each stage in the pipeline

is notified by an event from the preceding stage that the

next signal sample is available for processing. The stage

reads the passed-along prior stage’s output value as its

input and updates its current time. The stage then

performs a small amount of processing on the sample and
sets its output property to the newly calculated result.

Finally, the stage signals, through a new event to the

successor downstream stage, that it has completed its

processing chore and its output is ready. As a result, each

sample is time-stamped as it arrives and is allowed to

ripple through the pipeline without blocking or interfering

with the processing activities of the antecedent stages.

S1 S2 S3 SN

Event

Source

Input Output

One event every T

seconds

Event Event Event

Figure 4—Asynchronous pipeline model

The modular definition of the components allows for a

kind of plug-and-play approach to the overall system
implementation. The event delivery sequence is entirely

determined by the pipeline organization.

It is important, however, to keep each stage’s event-

handler computationally simple and to limit the overall

length of the pipeline in order to minimize the total

processing delay. Tasks that need to run longer or do

more work than is practical in the event-handler should do

so on blockable worker threads that are created and

started when the object instance is initialized. The basic

pipeline stage element is shown conceptually in Figure 5.

The stage properties include the input, output and time
data values that are inherited from the component base-

class.

S1

Event handler

Worker threads

Stage

Properties

Figure 5—Pipeline stage model

Unlike other software-based signal processing models that

operate by collecting a large number of samples and then

processing them in bulk, the pipelined approach allows a

single sample to trickle through the system and be

processed in real-time. Each pipeline stage in the receiver

framework has, in addition to an input and output, a

control object access point that optionally allows

feedback from downstream or external components so
that its behavior can be regulated by the outputs of other

objects. The pipeline component model allows one to

easily mimic hardware timing behaviors and functions in

software. As defined, the model more closely resembles a

discrete time-domain representation of a feedback control

system block diagram, which minimizes the need for

processor intensive transform-based analysis of large

blocks of signal data.

Figure 6 shows an example set of components arranged as

a pipeline. The components support control from

feedback and feedforward objects, such as frequency and
phase adjustment from a PLL and gain control from a

signal level detector.

Mixer Phase Filter
Input

Event

Output

Event

Event Event Event

AGC




0

Control Object

Control Object

Record

Figure 6—Example pipeline configuration

Each component of the pipeline is derived from a
common base-class implementing a typed interface that

represents the minimum functionality required to

participate in the receiver pipeline structure. Generalizing

the component description in this manner allows the

overall configuration of the pipeline to be highly

adaptable, easily supporting the creation and integration

of new components. However, if needed, existing

components can be enhanced through extension to

support additional specialized properties and methods as

required, without significant loss in flexibility. The

default component behavior is a unit delay (𝑧−1) transfer

function.

The pipeline components are configured into the desired

sequential structure with their events connected and

control objects assigned as part of a Pipeline Container

class. All that is required to run multiple pipelines in

parallel is to create multiple container instances and

connect them to a shared front-end event source. The

pipeline container type is derived from the base pipeline

component class so that larger pipelines can be comprised

of smaller ones, meaning pipelines may contain stages

that are themselves pipelines.

RECEIVER INTEROPERABILITY SUPPORT

The interoperability support features provide guidelines,

class templates, and other resources for the integration of

external hardware or software components through a

consistent set of interface wrappers. If required, it is

possible to implement in external hardware intermediate

parts of a receiver that are connected through a suitable

device-driver interface, and to make them behave as if the
work were performed by an internal application

component. This capability allows hardware functions to

be initially defined and tested in software, and then

implemented in hardware. Once implemented, the

hardware can then be plugged into the framework

replacing the software version of the component for

relevant performance evaluation comparisons. Software

functions built using other implementation tools or

technologies (languages, etc.) may also be combined with

the core application framework in a similar manner. Any

component within the system can be implemented
externally through the interoperability interface, provided

all critical timing requirements are satisfied.

The relationship between the interoperability layer and

the other framework components can be conceptualized

as shown in Figure 7. While the receiver framework

provides interface specifications and type declarations,

the interoperability layer provides a means of sending and

receiving messages to and from external or 3rd-party

components.

Interoperability Layer

Data

Recovery

Receiver Framework

Acquisition Tracking
3

rd
-party

libraries

Figure 7—Interoperability Layer

Figure 8 shows the various strata that make up a rep-

resentative interoperability implementation. Depending

on the device or component-level technology involved,

not all layers in this four-layer model will need to be
provided. At a minimum, only Layer-4 is required with

layers one through three providing hardware service

abstraction, state management, and data type compati-

bility, respectively.

Device-specific

functions

Interoperability

adaptation layer

Run-time

interoperability type

declarations

Component feature

abstractions

Layer 2:

Interface reduction and

state management wrapper

Layer 1:

Hardware-specific device

driver code

Layer 3:

Interoperability support

types and data marshalling

Layer 4:

Component interface

implementations

Figure 8—Layered interoperability model

Signal sources from different types of hardware front-

ends, including simulated and file-based data, may be

connected to the receiver framework through the inter-

operability layer. Low-level device driver code for
detecting, initializing, and activating the front-end is

specified at Layer-1. Any code that is necessary for

amalgamating multi-step operational sequences into a

single high-level step is developed for Layer-2, as is the

persistence of device state information. Any required

numeric type conversions or data formatting issues are

resolved at Layer-3. Finally, Layer-4 represents the

connection point to the receiver framework for the signal

source.

The benefit of the layered interoperability model is that

there typically is no need to repetitively coerce internal
data representations to fit different application programm-

ing interface signatures. System-level modules need only

support the externally visible level of abstraction through

the appropriate interface specification. As a result,

connecting components from different sources should

require no hacking and patching of someone else’s code

to support additional functionality.

TESTING RESULTS

Evaluation of the receiver framework has been conducted

with the post-detection tracking configuration shown in

Figure 9. Using an SiGe SE4110L-EK3 USB Link-1 (L1)

receiver front-end, the signal from the antenna (not

shown) is down-converted to an intermediate frequency

(IF) of 4.1304 MHz, and then sampled and digitized at a

sample rate of 16.3676 MHz. The event-source for the
arrival of a new sample from the front-end is connected in

parallel to a DLL module that follows the code delay, and

a signal-recorder object that writes the sample data to a

file on disk.

The DLL component produces early (E) and late (L) C/A

PRN code sequences by multiplying the input signal with

the output of an NCO block. A prompt (P) sequence is

kept time-aligned with the received code by adjusting the

code delay amount with a normalized E – L feedback

loop. Using the locally generated P values, the code is

removed from the carrier. The code-removed output from

the DLL is passed to a PLL that tracks changes in carrier

phase using an arctangent discriminator function and

adjusts the output of the NCO. Finally, the phase

transitions caused by the presence of the navigation data-

bits in the signal are forwarded to a demodulator
component that is used to extract the 50 bps data stream.

The outputs from the DLL and PLL components are also

fed to data recorder objects in a manner similar to the

input signal.

DLL PLL Demodulator

Input Event

Output Data

Event Event Output Event

NCO
Frequency & Phase

PLL

Data

Recorder

Signal

Front-end

DLL

Data

Recorder

Input

Data

Recorder

Figure 9— Tracking pipeline configuration used for testing

Referring back to Figure 8 for a moment, the code for

initializing the front-end hardware, starting and stopping

the sampler, and conducting sample data transfers over

the USB link represents Layer-1 functionality. Persisting

and reporting on the status of the device, such as current

error conditions, and combining the multiple steps

required to detect, enable, and activate the hardware into

single functional commands is handled in Layer-2. In

order to start the sampling process, the device needs to be
either reset or reinitialized, and then sent a byte-oriented

command sequence to turn-on the sampler; all of this

step-by-step activity was rolled into the single statement

commands Start(), Stop(), Reset(), and ReadData(). The

2-bit (magnitude + sign) data values from the analog-to-

digital-converter (ADC) in the front-end that are trans-

mitted over the USB connection to the PC as unsigned 8-

bit bytes are translated into a (sign + magnitude) repre-

sentation by mapping the values {11, 01, 00, 10} to {-3, -

1, 1, 3} at Layer-2. The byte-sized data types used by the

front-end are directly compatible with the interoperability
data marshaller, so the conversion services of Layer-3

were not required. Had the front-end utilized more

complex structures involving indirect pointers or multi-

byte character strings, these data types—referred to as

non-blittable, since their representations in memory are

not consistent between run-time environments—would

need to be converted to more basic types before being

exposed to Layer-4 where the hardware makes the final

connection to the receiver framework.

Only a single instance of the tracking pipeline is shown in

Figure 9. For tracking multiple signal sources (satellites),

instances of the pipeline are created and initialized for

each tracked object, all connected to the shared signal

front-end. Passing the data through the system in this

manner eliminates the need for maintaining large arrays
of samples that are synchronized across threads and aged

out of memory when the last process is completed. Each

stage in the pipeline has its own time-stamped copy of the

data it requires to complete its specified task. Information

regarding the incoming sample rate, IF, data bit-rate, PRN

code delay, and carrier frequency and phase are properties

of their representative component classes and are made

visible to the receiver pipeline container.

In order to produce a repeatable set of results, the input

signal from the front-end was initially recorded to a data

file, which was then used as the input source for
subsequent analysis. Furthermore, the front-end hardware

utilized was originally designed for data-capture in a post-

processing application and is not entirely adequate for

real-time signal processing. The device suffers from an

inability, by design, to capture data for more than 40

seconds without requiring a reset. At ≈16 MHz, the

sample-rate is excessively high such that on a 2.4 GHz

Pentium 4 processor only 150 (2400 / 16 = 150) system

clock-cycles worth of time is available between samples

to complete all processing stages. However, with a

sample-rate of ≈4x the intermediate frequency, the
minimum phase difference between samples of π/2 makes

accurately tracking the carrier phase on a sample-by-

sample basis either impossible or results in compromised

long-term stability of the PLL module.

An excerpt of the input signal as recorded is shown in

Figure 10. The signal exhibits the expected noiselike

appearance, bounded by the -3 to +3 input range.

Figure 10—Time-domain view of input signal source

The distribution of the input values covering the same

time period as Figure 10 is shown in the signal histogram

of Figure 11. The appearance of this graph indicates that

the input signal is not over-saturating the sampling

hardware and that the signal level is reasonably well-

balanced over the available range.

Figure 11—Input signal histogram

The frequency domain view of the signal is provided in

Figure 12, which was obtained by performing ensemble

averages on ten consecutive 4096-length Fast Fourier

Transforms (FFTs). The resultant periodogram shows the

input signal energy spread over about a 4 MHz bandwidth

that is roughly centered on the ≈4 MHz IF.

Figure 12—Frequency-domain view of input signal

Using the circular correlation approach as described in

[15] the presence of PRN #18 was detected in the signal,

and the initial code phase (time delay) was found. The

location of the peak in Figure 13 corresponds to a code

delay of about 917 μs.

Figure 13—Correlation peak for PRN#18 detection

The initial carrier frequency estimate (IF + Doppler) was

found by removing the C/A code from several
milliseconds of sampled data and then frequency

transforming the result, looking for a spectral peak.

Figure 14 reveals a peak of 4.1304 MHz + 2584.0 Hz.

Figure 14—Frequency-domain view of carrier for PRN #18

For the purposes of tracking the signal, the initial code

phase and carrier frequency estimates are passed to the

pipeline components during initialization. A thread is

created and attached to the main component collection for

each PRN detected in the signal.

The output from the PLL, shown in Figure 15, is taken

every millisecond and forwarded to the demodulator

component. The normalized value is then converted to an

appropriate binary one or zero at the expected data rate.

Figure 15—Navigation data signal from PLL output

At 50 bps and using the mapping of {-1, +1} → {1, 0} the

signal of Figure 15 corresponds to the output of ten data
bits {0110100101}.

FUTURE WORK & GENERAL CONSIDERATIONS

The tracking loop as tested and presented consists of only

the most basic processing techniques and requires more
sophisticated optimization and improvements to enhance

the overall performance characteristics. However, by

exploiting the integration intention of the framework, the

methods of [7], or other better ideas for PLL and DLL

tracking loops for example, can be incorporated.

The reference receiver needs the integration of almanac

and other support material to aid in the initial detection

process. There currently is no ability to make or

incorporate in-view satellite predictions based on last

known location and time-of-day information.

Many of the list or collection types in the framework

could benefit from the definition of C# generics or

templates to simplify the process of creation of new

components.

The development of a receiver pipeline graphical design

utility will eventually be included as an essential part of

the framework. Such a utility will assist in the

visualization of the interconnections between the

components and their event sources.

Some future considerations for software receivers include

the design of front-end hardware that downconverts the

input signal to a frequency that is closer to baseband in

order to reduce the workload on the PC processor, and at

the same time increasing the sampling rate as a factor of

the IF requirement. Simply satisfying the Nyquist rate for

choosing the sampling rate is not sufficient for many

control-related applications. Increasing the sampling rate

improves the stability and tracking capabilities of DLL

and PLL loops [10]. The differences in the stability

analysis of analog phase-lock loops (APLLs) and their
discrete counterparts (DPLLs) are discussed for first and

second-order systems in [12]. A baseband software

processor for GPS was developed and evaluated in [16]

using an IF of ≈20 kHz and a sampling rate of ≈2 MHz.

Many of the texts and references separate their

discussions on the process of satellite signal acquisition
from that of acquired signal tracking. The usual software

model is that acquisition finds the PRN sequences

corresponding to satellite transmissions in the incoming

signal, and then returns a collection of objects for the

tracking loops to follow over time. Tracking each

detected satellite on an individual dedicated thread

appears to be a good idea, but there is a great deal of

variability in the starting time of a thread from its point of

creation. The purpose of accurately finding the sub-

millisecond C/A-code delay in the acquisition stage is lost

when it takes 1-5 milliseconds for the tracking thread to

begin execution. The transition between acquisition and
tracking, therefore, must be viewed as a basic change of

state in a continuous operation rather than a step in a

longer sequential process. Methods need to be developed

that support the seamless transition from acquired signal

to tracked satellite.

The time-domain versions of acquisition processes

generally require an excessive length of time in order to

run. Frequency-based circular correlation methods for

finding the initial code-phase parameter will require the

incorporation of the output from a hardware counter
resource that can serve as a relative timestamp for the

incoming samples. The current code delay may then be

calculated from the initial delay provided by the

acquisition stage by using the difference in the counter

values. Newer PC system boards include a High-

Performance Event Timer (HPET) for multi-media time

reference purposes, which could also be used for front-

end signal sampling and timing.

The allocation of large blocks of memory for storing

signal samples takes time and processor clock-cycles to

achieve. These ―background‖ system activities are usually
unaccounted for, but need to be recognized in the overall

receiver workload.

Finally, the flexibility of the receiver framework allows

for a binary file to serve as the source for an input signal.

Configuring the signal classes with the required

information on the signal properties, such as IF and

sample-rate, could be done automatically if there were an

agreement on the establishment of a binary file format

that defines an embedded header for holding an

information structure that includes byte-ordering (endian-
ess), sample-rate, and other information required for

cross-platform and hardware compatibility.

CONCLUSION

Due to the complexity of modern microprocessors used in
PC-based computing systems, achieving real-time

software GNSS receiver operation will require algorithms

with high-degrees of parallelism and carefully designed

interprocess synchronization strategies. The nature of this

work requires more than an overall optimization effort on

the part of application and algorithm implementers.

This paper has provided an introduction to the on-going

development of a real-time software GNSS receiver

research framework. The design of the system eliminates

the need for parallel access to large signal data structures

and the requirement of creating multiple copies of objects
in memory for parallel access across multiple processes.

Using a block-diagram model and a pipeline signal

processing approach, the framework allows the

development and testing of both software and hardware

concepts in a consistent unified manner. An object-

oriented implementation maximizes the potential for

component re-use and enhances the system’s extensibility

benefits.

The interoperability features of the framework allow for
the integration of multiple types of component

implementations from different solution sources.

Combining individual efforts in such a manner allows for

the best-of-everything system development model

necessary to meet required performance objectives.

REFERENCES

[1] M. Baracchi-Frei, G. Waelchli, C. Botteron, and P.

Farine, "Real-Time Software Receivers: Challenges,
Status, Perspective," GPS World, vol. 20, no. 9, pp.

40-47, September 2009.

[2] K. Borre, D. Akos, N. Bertelsen, P. Rinder, and S. H.

Jensen, A Software-Defined GPS and Galileo

Receiver: Single-Frequency Approach. Boston:

Birkhäuser, 2007.

[3] A. Brown and J. Nordlie, "Integrated GPS/TOA

Navigation using a Positioning and Communication

Software Defined Radio," in Position, Location, And

Navigation Symposium, 2006 IEEE/ION, April 25-27,

2006.

[4] F. Dovis, A. Gramazio, and P. Mulassano, "Design

and test-bed implementation of a reconfigurable

receiver for navigation applications," Wireless

Communications and Mobile Computing, no. 2, p.

827–838, 2002.

[5] Jack K. Holmes, Spread Spectrum Systems for GNSS

and Wireless Communications. Norwood,

Massachusetts: Artech House, Inc., 2007.

[6] Intel Corporation, Intel® 64 and IA-32 Architectures

Optimization Reference Manual.: Intel Corporation,

2009.

[7] D. Lu, Y. Zhang, S. Lee, and C. Chen, "Achieving

Precise Real-Time GNSS Positioning with Software-

based Receivers," in ION GNSS 2009, Savannah,

GA, 22-25 September 2009.

[8] Pratap Misra and Per Enge, Global Positioning

System: Signals, Measurements, and Performance,

2nd Ed. Lincoln, Massachusetts: Ganga-Jamuna

Press, 2006.

[9] A. Mitelman et al., "Testing Software Receivers,"

GPS World, vol. 20, no. 12, pp. 28-34, December

2009.

[10] Charles L. Phillips and H. Troy Nagle Jr., Digital

Control System Analysis and Design. Englewood

Cliffs, N.J.: Prentice-Hall Inc., 1984.

[11] B. Sauriol and R. Landry Jr., "FPGA-Based

Architecture for High Throughput, Flexible and
Compact Real-Time GNSS Software Defined

Receiver," in ION NTM, San Diego, CA, 22-24

January 2007.

[12] J. Sebesta, "Discrete-time Phase and Delay Locked

Loops Analyses in Tracking Mode," International

Journal of Electronics, Circuits and Systems, vol. 1,

no. 4, Fall 2007.

[13] M. S. Sharawi and O. V. Korniyenko, "Software

Defined Radios: A Software GPS Receiver

Example," in International Conference on Computer

Systems and Applications, AICCSA '07, IEEE/ACS,

13-16 May 2007.

[14] John Stankovic, "The Spring architecture," in

Proceedings - EUROMICRO '90 Workshop on Real

Time, Horsholm, Denmark, 1990, pp. 104-113.

[15] James Bao-Yen Tsui, Fundamentals of Global

Positioning System Receivers: A Software Approach.

New York: John Wiley & Sons, Inc., 2000.

[16] W. Zhuang, "Composite GPS Receiver Modeling,

Simulations, and Applications (Ph.D. Disertation),"

Fredericton, NB, Thesis 5008, 1992.

[17] N.I. Ziedan, GNSS Receivers for Weak Signals.

Norwood, MA: Artech House, Inc., 2006.

