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ABSTRACT 

This paper outlines the architecture and on-going 

development effort of a modular software-based real-time 

GNSS receiver research framework using the Microsoft 
.NET Framework and the C# programming language. A 

pipelined signal-processing model is used to address key 

timing and inter-module synchronization challenges 

inherent in working with the parallelism required to 

simultaneously receive and process four or more satellite 
signals. An extensible interoperability layer provides 

clearly defined functional interfaces and simplifies the 

integration of existing hardware and software components 

with any stage in the signal pipeline. Various aspects of 

front-end hardware design requirements, as well as new 

acquisition and tracking mechanisms, are identified and 

discussed. 

INTRODUCTION 

There are many expected and anticipated advantages of 

software GNSS receivers over conventional hardware 

implementations. Among these benefits are lower cost, 

greater flexibility, easier updating or upgrading mech-

anisms, and better adaptability for supporting new signals 

and frequencies. Software receivers serve as fertile 

ground for researchers exploring the exciting possibilities 
of the development and testing of new signal processing 

techniques and ideas. Satisfying the computational 

requirements for a real-time software receiver has focused 

much of the current research and development effort on 

innovative algorithms aimed at reducing the necessary 

processing complexity. For the purposes of proof-of-

concept testing, many of these ideas have been 

demonstrated using some combination of field pro-

grammable gate arrays (FPGAs) and commercial digital 

signal processors (DSPs) with software written in 

assembly language. PC-based demonstrations that take 
advantage of the MMX/SSE (streaming SIMD—single 

instruction, multiple data—extensions) instruction sets 

provided by the Pentium-4 microprocessor have required 

the use of optimized assembler code for their 

implementations. 

 

While perhaps reconfigurable, hardware definition 

languages (HDLs), such as VHDL (very high speed 

integrated circuit hardware description language) or 

Verilog, are intended to describe hardware operations and 



are not widely considered to be software as the compiled 

binaries are not executed on a general purpose processor. 

Solutions based on a system-on-programmable-chip 

(SOPC) philosophy, using one or more soft-core 

processors combined with various application specific 

logic-blocks, bring the features and performance benefits 
of both hardware and software. However, they also suffer 

all the challenges of hardware and software systems, as 

well, in that they are often difficult to customize, 

requiring the support of a mix of non-integrated vendor-

specific tools and components. Furthermore, solutions 

built from specialized DSP chip-sets using hand-

optimized assembly languages and esoteric development 

tools require specialized software skill-sets to reproduce. 

These systems represent more of a one-off customized 

hardware implementation approach and generally fail to 

satisfy the adaptability and flexibility benefits expected 

from software receivers.  
 

Using readily available tools and high-level programming 

languages makes the technology more accessible to 

would-be system implementers and brings the desired 

software receiver goals closer to realization. Beneficial 

side-effects include having access to larger data storage 

devices, network connectivity and XML-based web-

service integration, links to GIS and mapping 

information, and support for rich application functionality 

that is difficult to provide through low-level code only. 

 
The expected benefits of this framework development 

will be to establish a whole context for software receiver 

research and to provide a unified view of a software 

receiver implementation using tools and technologies that 

encourage the development of diverse feature-rich 

applications. Support from the .NET Compact Framework 

makes the move to mobile devices based on embedded 

versions of Windows a straight path to hand-held 

applications. 

SOFTWARE & RECEIVERS 

Since without additional context, software can mean 

different things to different people, for this paper software 

is considered to be a collection of algorithms expressed in 

a programming language that is compiled for execution 

on a general purpose processor. However, there are many 
types and models of microprocessors available, as well as 

different run-time configurations of hardware and 

software supporting various levels of operating system 

integration. For practical reasons, the topics of discussion 

will be restricted to the consideration of a PC-based 

computing system with an Intel Pentium-4 class of 

processor running a recent version of Microsoft Windows 

and the .NET Framework. 

 

To refine scope still further, the murkiness of real-time 

and its accompanying modifiers of hard, soft, near, and 

firm needs to be clarified. Here, the critical distinction 

that is made between real-time and post-processing is that 

the real-time system has only the brief interval between 

sample arrivals to evaluate a new data point. Where the 

post-processing system has the advantage of being able to 

replay and ―look‖ at the signal stream multiple times, the 

real-time system must process a sample before it is gone. 
Block-oriented real-time processing techniques must 

digest a block of samples in a time interval given by the 

product of the block length and the sampling period. 
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Figure 1—Software GNSS Receiver 

As shown conceptually in Figure 1, the traditional model 

of a software receiver consists of a hardware front-end 
that performs signal pre-amplification and intermediate 

frequency (IF) down-conversion prior to sampling and 

analog-to-digital conversion. The resulting data-stream is 

then processed further by subsequent software stages. The 

obvious goal with a software receiver is to put as much 

processing functionality as possible into software modules 

in order to maximize the overall system flexibility and 

potential cost savings. Doing so also allows for, among 

other things, easier development and testing of methods 

for multipath amelioration, weak-signal acquisition and 

tracking, and support for new signals and spreading 

codes. 
 

Several non-commercial research-oriented reference 

implementations of post-processing receivers are 

available, and their number seems to be growing daily. 

When combined with a low-cost hardware front-end, 

MATLAB versions such as [2] provide an excellent 

starting point for the exploration and study of the 

processing mechanics involved with signal acquisition, 

tracking, and navigation message recovery. However, a 

MATLAB application operating on a Java virtual 

machine is a non-ideal solution architecture for the basis 
of a real-time GNSS receiver. Versions developed in 

C/C++ and assembler attempt to address environment 

performance issues, however C and native assembler 

don’t interoperate easily with other development 

languages. Building useable high-level applications in the 

C language is a time-consuming endeavor. 

 

In a post-processing receiver application, sampled data is 

typically first stored to a file that is then used as an input 

to the system modules. The input data represents a static 

snap-shot of the in-view satellites in the sky at the time 



the sample was recorded. While the acquisition process 

may subsequently take hours to run, the results obtained 

are valid for the life of the file; if the file contents or 

analysis software haven’t changed, neither should the 

processing results. Inter-module synchronization is 

achieved by running dependent tasks sequentially, fully 
completing one operational step before starting another. 

So, for example, satellite tracking does not begin until the 

acquisition stage has analyzed the signal file and 

produced the output of a collection of objects that can be 

tracked. 

 

Conceptually, real-time and post-processing software 

receivers share the same basic processing stages, however 

receivers attempting to operate in real-time must analyze 

a newly arrived individual data point in the time interval 

between sampling instances. The code has only a small 

moment of time to determine the impact this new data 
will have on the receiver state and output. Real-time 

operation requires the synchronization of multiple 

overlapping dependent tasks with tight completion 

deadlines that are executed on a predictable schedule. If 

an acquisition stage precisely determines the initial code 

delay of a signal to be tracked, but the handoff between 

acquiring the signal and the tracking process takes an 

unpredictable or excessive amount of time, the change in 

signal with the passage of time invalidates the result and 

necessitates re-acquiring the signal all over again.  

 
The current approach towards realizing real-time software 

receiver operation most often involves optimizing the 

implementation of the various receiver sub-modules to 

improve execution performance. There are two drawbacks 

to this situation, though. Firstly, optimizing individual 

isolated receiver pieces leaves the individual optimizer 

feeling rather isolated. Determining the performance gain 

from enhancements in one component becomes difficult 

without the ability to easily integrate the implementation 

back into a working system for comparison purposes. 

Secondly, while overall performance is important, it alone 

is not the whole picture in meeting the needs of a real-
time system.  

 

Achieving real-time operational characteristics will 

require more than an optimization effort on existing post-

processing algorithms. Even in a multiple-processor-core 

PC environment, performing calculations in long-running 

iterative loops pins a workload to a single processor while 

the others remain essentially idle. To avoid this situation 

and to maximize the ability of the system to schedule 

execution resources in a fine-grained manner requires the 

use of a carefully designed multi-threaded application. 
Managing and synchronizing thread execution and cross-

thread interactions becomes an essential element in the 

software receiver solution architecture. Additional 

considerations regarding such things as the timing of the 

transition between signal acquisition to tracking, tracking-

loop stability analysis, and the implications of the front-

end sampling-rate limitations must also be evaluated. 

 

Post-processing receivers have the advantage of being 

able to work away on the signal data starting from 

different initial offsets and cross-comparing the results to 
determine the location of navigation data-bit edges. A 

real-time receiver must make these determinations along 

the way, and somehow compensate for timing synch-

ronization errors without corrupting the received navi-

gation message. The more sophisticated the edge detect-

ion and timing extraction algorithms become, the less 

likely it is that they will be able to be executed under the 

real-time constraints. 

 

Both varieties of software GNSS receivers, in general, 

suffer from basic implementation challenges that would 

be straightforward to overcome in hardware-based 
designs. With hardware receivers, inter-module synch-

ronization is readily achieved by connecting dependent 

components to a common clock source. Measuring in-

coming signal frequency and phase, implementing 

feedback control, and the processing of the integro-

differential equations present in tracking-loop filters all 

occur quite naturally with coils and capacitors in 

hardware, but require many lengthy calculations when 

performed in software. Even a basic shift-register 

generator can involve complex code and large data 

structures to implement efficiently in software. When 
necessary, depending on the discriminator function used, 

the synchronization of a software phase-lock loop (PLL) 

with the output of a data-bit recovery demodulator creates 

another challenge. In this case, it is the hardware that is 

soft and the software that is hard. 

 

Happily, there are things that are much simpler to achieve 

using software instead of hardware. Providing better and 

easier support for making changes to functionality imple-

mentation is one of them. Visualizing the internal system 

state through introspection and reflection during testing 

and debugging in an integrated development environment 
is another. Software implementations allow the direct 

access to observable system states within the receiver that 

would otherwise require intrusive instrumentation to 

realize in hardware. 

RELATED WORK 

General background information on the design and 

operation of GPS receivers can be found in [8] and 

broader but related details on spread-spectrum comm-

unication systems in [5]. Additional information on 

software signal processing methods are provided in [2], 

[15] and [17]. These references develop some of the 

necessary theory for software-based GNSS receivers. 

 

There are so many software receivers of the post-

processing non-real-time variety that a comprehensive 



evaluation of the nature and characteristics of all of them 

would be practically impossible. Nearly any programming 

language that can open a file and perform basic 

mathematical operations can be used for the development 

of these projects. A good overview of the current state of 

software GNSS receivers can be found in reference [1] 
and issues with their testing protocols and challenges are 

covered nicely in [9]. 

 

The variety of MATLAB-based solutions, such as those 

presented in [13] and included in [2], like the examples 

provided by [15] and [17], are post-processing receivers 

and possess no real-time design intentions or 

characteristics. 

 

There are also highly optimized receiver components that 

are written in some combination of assembler and C++ 

claiming real-time performance benefits. However the 
designs and methods of implementation of test-beds such 

as [4], or the software-defined-radio receivers for GPS 

and GNSS discussed in [11] and [3] are cobbled together 

from the complex interconnection of a veritable Jenga® 

tower of hardware-dependent system prototyping comp-

onents. Solutions such as these are difficult to repeat and 

customize, and it is even harder to incorporate their 

presented generalized conclusions into a specific 

application development and testing environment. 

 

Any relevant discussion on threading, parallelism, and the 
required level of inter-process communication and data 

structure synchronization are conspicuously absent from 

the vast multitude of emerging real-time software receiver 

implementation papers. 

THREADS & PROCESSORS 

A thread is a conceptual construct that is used to model 

the path a computer processor takes when performing the 

instructions contained in a set of code in the form of a 

program. Threads represent a basic unit of software 

execution. 

 

The state of a thread consists of all the CPU registers—

instruction counter, stack position, status flags, 

accumulator and other general purpose registers—that 

hold the current values of an executing program’s internal 
variables. State reduction is achieved by externalizing 

these internal registers to reserved areas of system 

memory where they can be saved and later retrieved. 

Multiple blocks of memory can be used to simultaneously 

maintain the state of several threads, which gives rise to a 

multi-threaded run-time environment. When one thread 

can no longer make progress or if another more important 

(higher-priority) thread needs to run, the current thread’s 

state is stored and the former state of the next thread 

ready-to-run is loaded and the processor resumes 

execution.  

 

By managing multiple threads in such a manner, a single 

high-speed processor can appear to perform several tasks 

in parallel. Of course, the resulting parallelism is in 

appearance only in that one processor may only execute 

one thread’s instructions at a time. To improve 

performance, multiple processors may be used to execute 
an application, where each available processor manages a 

different set of threads for execution. 

 

A thread is a synthetic construct that has been invented in 

order to optimize the utilization of a limited number of 

processor clock cycles. If a thread is waiting for an 

external or shared resource, such as the completion of an 

I/O operation or reading from a comparatively slow 

memory location, rather than wasting time spinning (or 

idling) the current thread it is better to do other work 

instead. A context switch is performed by the operating 

system whenever progress is no longer being made on the 
current thread’s execution while it waits to acquire a 

resource. Threads provide, when properly used, a means 

of creating fine-grained independent workers for long-

running or background activities. 

 

Scheduling is the act of determining the order in which 

the threads (or tasks) within a process are made running 

on the CPU. A reliable real-time system implementation 

requires a deterministic scheduler; a thread that is 

scheduled to begin executing must do so in a predictable 

manner and it must complete its work in a fixed amount 
of time. 

 

There are many factors that can influence the length of 

time a particular task needs in order to complete its work. 

Even without thread interactions for non-processor 

resources, factors such as differences in the instruction 

counts for conditional code branches, iterations of loop-

counts based on external variables, the order in which 

memory has recently been accessed, and the specific 

processor architecture all influence the number of clock 

cycles (i.e. time) required for a task to complete. As a 

result of these extrinsic variations, statistics on the best-
case, worst-case, and average completion times need to be 

collected and used in some way in order to evaluate the 

viability of a particular schedule. 

 

The application development methodology discussed in 

[14] stresses predictability and flexibility in real-time 

system design. Implementations utilizing processor 

architectures that are Complex Instruction Set Computer-

based (CISC) with their variable instruction lengths and 

pipeline depths are difficult to analyze and evaluate for 

worst-case execution times. Furthermore, the times 
arrived at would be large compared with average 

execution times, yielding an overly pessimistic schedule. 

On the other hand, favoring predictability and low-

variance, the philosophy of simpler designs in Reduced 



Instruction Set Computer (RISC) architecture machines 

makes the performance characteristics easier to analyze. 

 

For the PC, the Intel Core 2 Duo, a CISC-based pro-

cessor, provides two logical processors in a physical 

package. Each processor has a separate execution core 
and first-level (L1) cache. Both cores use a shared 

second-level (L2) cache, but the full capacity of this cache 

can be used by one logical processor if the other processor 

is inactive. The Core 2 Quad processor consists of two 

identical copies of the dual-core modules. Each logical 

processor in both the dual and quad core packages 

accesses the outside world through a shared system bus. 

 

The pipelined micro-architecture of the Intel Core 

contains [6]: 

• An in-order front-end that fetches instruction streams 

from memory. Four instruction decoders handle up to 

five instructions per cycle. Decoded instructions 

(called μops) are fed to an out-of order execution unit 

four at a time. 

• An out-of-order execution engine that issues up to six 

μops per clock cycle. The μops are re-ordered to 

execute as soon as operand sources are ready and 

execution resources are available. 
• An in-order instruction retirement unit that ensures 

μop execution results are processed and completed in 

a sequence consistent with the original program 

order. A peak instruction retirement rate of up to four 

μops per cycle can be attained. 

Each processor core is able to fetch, dispatch, execute, 

and retire up to four instructions per system clock cycle. 

When an instruction sequence causes the processor to 
wait for a shared resource, the execution core performs 

other instructions rather than sitting idle. For semantically 

correct execution, the results of instructions must be 

committed in original program order before they are 

retired.  

 

Due to the high level of pipelining in the processor, 

instruction timing data from Intel is specified in the form 

of latency and throughput values. Latency is the number 

of clock cycles necessary in order for the execution core 

to complete the execution of all of the μops that form an 
instruction. Throughput refers to the number of clock 

cycles required to wait before the same instruction can be 

accepted again. These values are implementation depen-

dent in that they can vary between different core models. 

 

Other factors affecting these timings can include: 

• The memory type the instructions came from and any 

cache replacements or memory write-backs that are 
subsequently required. 

• Activities on other cores, what instruction sequences 

they are executing and have recently completed. 

• Code optimizations across all other running threads. 

• Whether the processor is operating in 32-bit or 64-bit 

execution mode. 

As a result of these variations, the often-used means of 

determining total execution times by summing the clock 

cycle counts for a series of instructions is not valid for a 

modern superscalar processor. 

 

“Due to the complexity of dynamic execution and out-of-

order nature of the execution core, the instruction latency 

data may not be sufficient to accurately predict realistic 

performance of actual code sequences based on adding 

instruction latency data.” [6] 

 
Since reliable and precise clock-cycle counts for 

instruction execution times are not available, results 

derived from generalized assumptions on how long 

individual operations take are inadequate to predict 

required performance levels. Statistical measurements on 

execution times gathered with an application profiler must 

be used instead. The outcome of such an analysis effort is 

a stochastic schedule—ranges of probability—that is only 

valid for a given execution environment and instruction 

sequence, making it impossible to accurately determine 

the process run-time duration.  
 

Of course, it would also be naïve to assume that a quad-

core processor has four times the capability that a single-

core processor would have. The levels of parallelism 

implicit in the algorithms and the amount of synchro-

nization overhead required for their execution limit the 

potential performance gain possible with multi-processor 

systems. In general, increasing the number of processors 

does not proportionally increase the processing per-

formance of the system, depending on the degree to which 

portions of the application can be executed in parallel. 

Assuming a 50% parallel workload, [6] calculates the 
expected performance improvement using two physical 

processors to be only 33% compared to using a single 

processor, with four processors providing no more than a 

60% improvement over a single processor. In practice, it 

can be very difficult to determine with any certainty  the 

actual degree of parallelism present, since the final 

application that runs is often some mix of user, library, 

and operating system code. However, improper use of 

thread synchronization can reduce the effective level of 

parallelism and diminish the potential performance gain 

through processor scaling. 
 

With a hardware-based design, getting two or more 

modules to execute in-step with one another is basically a 

matter of running wires from their respective clock inputs 

to the output of a common clock source. Similar 

synchronous behaviors in software are much harder to 

achieve; it is very difficult to guarantee that multiple code 

modules will run simultaneously with a high-degree of 

timing precision. In single-processor multi-threaded 



environments, concurrent execution is obtained by 

interleaving the instructions from different threads 

according to some schedule. With a multiple-processor 

solution, multiple threads may run together over time, but 

predicting and guaranteeing their short-term temporal 

behaviors and interactions are critical and non-trivial 
design challenges. 

 

Unanticipated process interactions across shared data 

structures can cause unpredictable, seemingly random, 

results. The manifestation of these interactions most often 

comes in the form of spurious data corruption and system 

crashes. Debugging and proactively eliminating the side-

effects from poorly behaved threads requires a great deal 

of time and testing in order to achieve a satisfactory level 

of application performance and reliability. 

 

The end result of attempts to characterize and manage the 
vagaries of multiple interacting threads is the realization 

that achieving some measure of real-time software 

receiver operation will require much more than additional 

processors and complex algorithm optimizations. 

RECEIVER DEVELOPMENT FRAMEWORK 

The GNSS Receiver Development Framework project has 

been designed and developed to address the issues of 

thread-management, inter-process communication, and 

module synchronization associated with the levels of 

parallelism required for real-time software-based GNSS 

receivers. The main goals of the framework’s object-

oriented design are 

• to be developed using a modern high-level language 

with tools that are intended for the implementation of 

feature-rich applications; 

• to provide a modular component model that supports 

a high-degree of reuse through inheritance and poly-

morphism; 

• to integrate with other 3rd-party hardware and 

software components in as simple a manner as 

possible; 

• to act as an extensible baseline receiver reference.  

Serving as the focal point for customization and 

functional composition, the receiver development 

framework provides the essential aspects for object 

creation (instantiation), system orchestration, signal 

detection, synchronization, and tracking. Unlike off-line 

post-processing tools and utilities, the framework is 

intended to deliver the critical performance characteristics 

necessary to achieve real-time receiver operation. 
 

An important aspect of the framework’s design is prov-

iding for the integration of external hardware and soft-

ware components in a seamless and consistent manner. 

Doing so allows for the immediate reuse of existing 

solution pieces, while simultaneously supporting the 

externalization of any newly developed features. As such, 

receiver algorithms may first be developed and tested as 

software within the framework and then migrated into 

hardware representations that can be hooked back into the 

receiver object model for further testing and evaluation. 

 
The receiver framework supports the development and 

integration of toolkits of a variety of implementation 

types for each component category. Baseline performance 

measurements and operational characterizations with one 

implementation strategy can be made and used for direct 

comparison to alternate methods for benefit evaluation. 

By leveraging the advantages of object-oriented design 

techniques, comparisons can be made with minimal code 

changes simply by overriding the implementation of a 

class virtual method and invoking the base-method at run-

time. 

 
The desire in the creation of the receiver framework was 

not to refine or improve upon existing signal analysis 

algorithms, but rather to give them a better place to live. 

The longer-term vision is to produce a number of Visual 

Studio project templates that may be used as starting 

points for receiver development. It was decided to avoid 

basing the design on the capabilities of toolkit-centric 

scripting languages, such as MATLAB, for the previously 

mentioned performance issues. Of course, this decision 

carries a few consequences, not the least of which are the 

many features of convenience, such as graphing and 
plotting functionality, and frequency domain filters and 

transforms that are immediately absent. While the product 

of this framework is not intended to be simply another 

signal-processing toolkit or a collection of library 

components that can be incorporated into other 

applications, it does provide implementations for many of 

the essential signals-related transforms and mathematical 

operations. Simple graphing objects have also been 

developed that can be placed within the user interface as 

visual elements. Data collected from the receiver may 

also be exported and analyzed separately by other 

applications as required. 
 

The reference implementation provided is only one way, 

not necessarily the best, of achieving a signal detection 

and tracking objective. However, it is the generalized set 

of interfaces and abstract classes that give the framework 

its flexibility and offers the greatest value to its con-

sumers. The design of the framework establishes the 

philosophy of defining an interface, declaring an abstract 

base that implements it, and creating derived types that 

satisfy solution requirements. The aim of the framework 

is to serve as a development guidance reference for how 
receiver applications should be structured and assembled 

to achieve the most worthwhile results in the shortest 

timeframe with the greatest opportunity for reuse and 

extension. 
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Figure 2—Receiver Development Framework 

The top-level system diagram is shown in Figure 2. Each 

box in the development framework diagram represents a 

collection of related pieces that combine to produce the 

expected output from the corresponding module. All that 
is necessary to change or extend a component is to 

implement the classes of objects that support the required 

interfaces and methods. While the greatest flexibility will 

be achieved when all of the components are developed in 

software, there is nothing in the overall design that 

precludes the substitution of a specialized hardware 

device in place of a class method or an entire class 

implementation, as long as the hardware fully supports 

the expected input and output parameters of the method 

being replaced. It’s for this reason that the system was 

developed in such a way that it more closely resembles 
the block diagrams of hardware that it represents. 

 

The object-oriented design takes advantage of the 

reusability available through inheritance and poly-

morphism. Types that are derived from a common base-

class can be thought of as new implementations of the 

base-class functionality. Invokers see no difference in the 

calling semantics, and implementers can leverage any 

suitable functionality existing in the base-class. Reuse 

exists, therefore, at two levels. 

 

The analog front-end is used to tune, band-limit, and 
sample the incoming signal so that it can be brought into 

the system in the form of a stream of binary data. It is 

connected to the framework through a set of signal device 

driver interface components that are used to structure the 

properties and attributes of the device data source into a 

format that is compatible with the dependent sub-systems.  

 

Interoperability support features allow previously 

developed functional libraries and external hardware 

devices to be tied into the system in a uniform and 

consistent manner without a great deal of effort or 
intellectual overhead. Although dependent on the 

polymorphic behavior of the framework’s object-oriented 

design, the interoperability layer allows for high-degrees 

of reuse and application flexibility. 

 

While not necessarily an integral part of the receiver 

framework in that they borrow from and must be 

supported by operating system constructs, the thread 

management components represent a collection of work-

queues and synchronization primitives that are required to 
help ensure the desired real-time performance objectives 

of the system. Events and delegates available to other 

system components are considered part of thread 

management services, and patterns for their use are 

provided. 

 

The frequency operators section refers to the frequency-

domain essentials of signal processing. These include 

FFT/DFT functions and their inverses, filtering functions, 

and other operations necessary to transform input signals 

into useable data. Reference implementations have been 

provided as parts of the receiver framework; however, 
these can easily be replaced with alternate software 

algorithms or with customized external hardware blocks. 

 

Classes and supporting interface specifications for items 

that are commonly encountered or shared between 

operations such as the Complex data type and system 

status enumerations are provided in the common type 

declarations of the receiver framework. Data types and 

structures that bridge between functional modules can be 

considered as part of the common type library. 

 
Pseudo-random noise (PRN) code generators are required 

to reproduce an exact replica of the sequence of binary 

chips that was originally used by the transmitter to spread 

the signal. Only the GPS C/A codes are currently 

provided, but different code types and generating methods 

are supported by extension. 

 

The signal acquisition and tracking module contains the 

classes that are responsible for finding the presence of 

PRN sequences in the received signal and keeping the 

locally generated sequences in synchronization. The 

acquisition process attempts to discover a transmitted 
sequence by cross-correlating the incoming signal with 

each possible spreading code while looking for a peak in 

the correlator output. After signal acquisition is 

completed, a collection of objects is returned for 

tracking—each object representing a detected PRN 

sequence in the input signal. Object models for a PLL, a 

delay-lock loop (DLL), a numerically-controlled 

oscillator (NCO), and a reference time-base are provided 

as part of this module. 

 

The data demodulator components contain the code that is 
required to extract, verify, and process the recovered 

navigation data message. Any required data formatting 

and validation functions may be included in this block as 

well. 



THE PIPELINE COMPONENT MODEL 

An often used construct of high-performance computer 
architecture is the sequential pipeline, where functional 

blocks are linked together in a chain and driven by a 

common clock. Each block in the chain achieves some 

measure of work in the time interval between clock pulses 

(ticks) contributing to the overall operation. New oper-

ations are started at the beginning of the pipeline while in-

progress operations occur at successive stages. The output 

of one block becomes the input for the next, and the final 

result is taken from the output of the last stage in the 

sequence. In hardware, the clock source is usually the 

output of a local oscillator or some other reference signal 

that is physically wired to a control point on each stage 
that latches the input data between clock transitions. 
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Figure 3—Synchronous pipeline model 

Without access to a shared time reference, pipelines are 

difficult to build using software constructs. However, the 

same pipeline structure can be achieved in software 

applications with events and event-handlers. To do so 

requires event-handlers from multiple object instances be 

assigned to respond to a single shared event-source. The 

shared event-source serves an equivalent role as the 

common clock in the hardware version, such as the 

configuration shown in Figure 3. The throughput benefit 

of this model results from the more evenly distributed 
work-load due to the processing that occurs between the 

event-trigger intervals. 

 

Unfortunately, with software-based events, the operating 

system makes no guarantee as to the order of delivery of 

the event signals to the various subscribed handlers. The 

order in which the event-handlers are registered with the 

event-source can influence but not fully determine which 

handlers will receive the event notification first. If the last 

stage is triggered to run out of sequence with the rest of 

the pipeline, the resulting output would be a repeat from 
the previous cycle and obviously an error. A synchronous 

pipeline requires semaphores, wait-handles, or other 

shared synchronization primitives to reliably execute in 

software, each of which negatively effects system 

performance and increases implementation complexity. 

 

The receiver framework makes use of an innovative 

event-driven asynchronous pipeline model for the 

processing activities involved in signal acquisition and 

tracking, as shown in Figure 4. Each stage in the pipeline 

is notified by an event from the preceding stage that the 

next signal sample is available for processing. The stage 

reads the passed-along prior stage’s output value as its 

input and updates its current time. The stage then 

performs a small amount of processing on the sample and 
sets its output property to the newly calculated result. 

Finally, the stage signals, through a new event to the 

successor downstream stage, that it has completed its 

processing chore and its output is ready. As a result, each 

sample is time-stamped as it arrives and is allowed to 

ripple through the pipeline without blocking or interfering 

with the processing activities of the antecedent stages. 
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Figure 4—Asynchronous pipeline model 

The modular definition of the components allows for a 

kind of plug-and-play approach to the overall system 
implementation. The event delivery sequence is entirely 

determined by the pipeline organization. 

 

It is important, however, to keep each stage’s event-

handler computationally simple and to limit the overall 

length of the pipeline in order to minimize the total 

processing delay. Tasks that need to run longer or do 

more work than is practical in the event-handler should do 

so on blockable worker threads that are created and 

started when the object instance is initialized. The basic 

pipeline stage element is shown conceptually in Figure 5. 

The stage properties include the input, output and time 
data values that are inherited from the component base-

class. 
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Figure 5—Pipeline stage model 

Unlike other software-based signal processing models that 

operate by collecting a large number of samples and then 



processing them in bulk, the pipelined approach allows a 

single sample to trickle through the system and be 

processed in real-time. Each pipeline stage in the receiver 

framework has, in addition to an input and output, a 

control object access point that optionally allows 

feedback from downstream or external components so 
that its behavior can be regulated by the outputs of other 

objects. The pipeline component model allows one to 

easily mimic hardware timing behaviors and functions in 

software. As defined, the model more closely resembles a 

discrete time-domain representation of a feedback control 

system block diagram, which minimizes the need for 

processor intensive transform-based analysis of large 

blocks of signal data. 

 

Figure 6 shows an example set of components arranged as 

a pipeline. The components support control from 

feedback and feedforward objects, such as frequency and 
phase adjustment from a PLL and gain control from a 

signal level detector. 
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Figure 6—Example pipeline configuration 

Each component of the pipeline is derived from a 
common base-class implementing a typed interface that 

represents the minimum functionality required to 

participate in the receiver pipeline structure. Generalizing 

the component description in this manner allows the 

overall configuration of the pipeline to be highly 

adaptable, easily supporting the creation and integration 

of new components. However, if needed, existing 

components can be enhanced through extension to 

support additional specialized properties and methods as 

required, without significant loss in flexibility. The 

default component behavior is a unit delay (𝑧−1) transfer 

function. 
 

The pipeline components are configured into the desired 

sequential structure with their events connected and 

control objects assigned as part of a Pipeline Container 

class. All that is required to run multiple pipelines in 

parallel is to create multiple container instances and 

connect them to a shared front-end event source. The 

pipeline container type is derived from the base pipeline 

component class so that larger pipelines can be comprised 

of smaller ones, meaning pipelines may contain stages 

that are themselves pipelines. 

RECEIVER INTEROPERABILITY SUPPORT 

The interoperability support features provide guidelines, 

class templates, and other resources for the integration of 

external hardware or software components through a 

consistent set of interface wrappers. If required, it is 

possible to implement in external hardware intermediate 

parts of a receiver that are connected through a suitable 

device-driver interface, and to make them behave as if the 
work were performed by an internal application 

component. This capability allows hardware functions to 

be initially defined and tested in software, and then 

implemented in hardware. Once implemented, the 

hardware can then be plugged into the framework 

replacing the software version of the component for 

relevant performance evaluation comparisons. Software 

functions built using other implementation tools or 

technologies (languages, etc.) may also be combined with 

the core application framework in a similar manner. Any 

component within the system can be implemented 
externally through the interoperability interface, provided 

all critical timing requirements are satisfied. 

 

The relationship between the interoperability layer and 

the other framework components can be conceptualized 

as shown in Figure 7. While the receiver framework 

provides interface specifications and type declarations, 

the interoperability layer provides a means of sending and 

receiving messages to and from external or 3rd-party 

components. 
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Figure 7—Interoperability Layer 

Figure 8 shows the various strata that make up a rep-

resentative interoperability implementation. Depending 

on the device or component-level technology involved, 

not all layers in this four-layer model will need to be 
provided. At a minimum, only Layer-4 is required with 

layers one through three providing hardware service 

abstraction, state management, and data type compati-

bility, respectively.  
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Figure 8—Layered interoperability model 

Signal sources from different types of hardware front-

ends, including simulated and file-based data, may be 

connected to the receiver framework through the inter-

operability layer.  Low-level device driver code for 
detecting, initializing, and activating the front-end is 

specified at Layer-1. Any code that is necessary for 

amalgamating multi-step operational sequences into a 

single high-level step is developed for Layer-2, as is the 

persistence of device state information. Any required 

numeric type conversions or data formatting issues are 

resolved at Layer-3. Finally, Layer-4 represents the 

connection point to the receiver framework for the signal 

source. 

 

The benefit of the layered interoperability model is that 

there typically is no need to repetitively coerce internal 
data representations to fit different application programm-

ing interface signatures. System-level modules need only 

support the externally visible level of abstraction through 

the appropriate interface specification. As a result, 

connecting components from different sources should 

require no hacking and patching of someone else’s code 

to support additional functionality. 

TESTING RESULTS 

Evaluation of the receiver framework has been conducted 

with the post-detection tracking configuration shown in 

Figure 9. Using an SiGe SE4110L-EK3 USB Link-1 (L1) 

receiver front-end, the signal from the antenna (not 

shown) is down-converted to an intermediate frequency 

(IF) of 4.1304 MHz, and then sampled and digitized at a 

sample rate of 16.3676 MHz. The event-source for the 
arrival of a new sample from the front-end is connected in 

parallel to a DLL module that follows the code delay, and 

a signal-recorder object that writes the sample data to a 

file on disk. 

 

The DLL component produces early (E) and late (L) C/A 

PRN code sequences by multiplying the input signal with 

the output of an NCO block. A prompt (P) sequence is 

kept time-aligned with the received code by adjusting the 

code delay amount with a normalized E – L feedback 

loop.  Using the locally generated P values, the code is 

removed from the carrier. The code-removed output from 

the DLL is passed to a PLL that tracks changes in carrier 

phase using an arctangent discriminator function and 

adjusts the output of the NCO. Finally, the phase 

transitions caused by the presence of the navigation data-

bits in the signal are forwarded to a demodulator 
component that is used to extract the 50 bps data stream. 

The outputs from the DLL and PLL components are also 

fed to data recorder objects in a manner similar to the 

input signal. 
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Figure 9— Tracking pipeline configuration used for testing 

Referring back to Figure 8 for a moment, the code for 

initializing the front-end hardware, starting and stopping 

the sampler, and conducting sample data transfers over 

the USB link represents Layer-1 functionality. Persisting 

and reporting on the status of the device, such as current 

error conditions, and combining the multiple steps 

required to detect, enable, and activate the hardware into 

single functional commands is handled in Layer-2. In 

order to start the sampling process, the device needs to be 
either reset or reinitialized, and then sent a byte-oriented 

command sequence to turn-on the sampler; all of this 

step-by-step activity was rolled into the single statement 

commands Start(), Stop(), Reset(), and ReadData(). The 

2-bit (magnitude + sign) data values from the analog-to-

digital-converter (ADC) in the front-end that are trans-

mitted over the USB connection to the PC as unsigned 8-

bit bytes are translated into a (sign + magnitude) repre-

sentation by mapping the values {11, 01, 00, 10} to {-3, -

1, 1, 3} at Layer-2. The byte-sized data types used by the 

front-end are directly compatible with the interoperability 
data marshaller, so the conversion services of Layer-3 

were not required. Had the front-end utilized more 

complex structures involving indirect pointers or multi-

byte character strings, these data types—referred to as 

non-blittable, since their representations in memory are 

not consistent between run-time environments—would 

need to be converted to more basic types before being 

exposed to Layer-4 where the hardware makes the final 

connection to the receiver framework. 

 



Only a single instance of the tracking pipeline is shown in 

Figure 9. For tracking multiple signal sources (satellites), 

instances of the pipeline are created and initialized for 

each tracked object, all connected to the shared signal 

front-end. Passing the data through the system in this 

manner eliminates the need for maintaining large arrays 
of samples that are synchronized across threads and aged 

out of memory when the last process is completed. Each 

stage in the pipeline has its own time-stamped copy of the 

data it requires to complete its specified task. Information 

regarding the incoming sample rate, IF, data bit-rate, PRN 

code delay, and carrier frequency and phase are properties 

of their representative component classes and are made 

visible to the receiver pipeline container. 

 

In order to produce a repeatable set of results, the input 

signal from the front-end was initially recorded to a data 

file, which was then used as the input source for 
subsequent analysis. Furthermore, the front-end hardware 

utilized was originally designed for data-capture in a post-

processing application and is not entirely adequate for 

real-time signal processing. The device suffers from an 

inability, by design, to capture data for more than 40 

seconds without requiring a reset. At ≈16 MHz, the 

sample-rate is excessively high such that on a 2.4 GHz 

Pentium 4 processor only 150 (2400 / 16 = 150) system 

clock-cycles worth of time is available between samples 

to complete all processing stages. However, with a 

sample-rate of ≈4x the intermediate frequency, the 
minimum phase difference between samples of π/2 makes 

accurately tracking the carrier phase on a sample-by-

sample basis either impossible or results in compromised 

long-term stability of the PLL module. 

 

An excerpt of the input signal as recorded is shown in 

Figure 10. The signal exhibits the expected noiselike 

appearance, bounded by the -3 to +3 input range. 

 

 

Figure 10—Time-domain view of input signal source 

The distribution of the input values covering the same 

time period as Figure 10 is shown in the signal histogram 

of Figure 11. The appearance of this graph indicates that 

the input signal is not over-saturating the sampling 

hardware and that the signal level is reasonably well-

balanced over the available range. 

 

 

Figure 11—Input signal histogram 

The frequency domain view of the signal is provided in 

Figure 12, which was obtained by performing ensemble 

averages on ten consecutive 4096-length Fast Fourier 

Transforms (FFTs). The resultant periodogram shows the 

input signal energy spread over about a 4 MHz bandwidth 

that is roughly centered on the ≈4 MHz IF. 

 

 

Figure 12—Frequency-domain view of input signal 

Using the circular correlation approach as described in 

[15] the presence of PRN #18 was detected in the signal, 

and the initial code phase (time delay) was found. The 

location of the peak in Figure 13 corresponds to a code 

delay of about 917 μs. 

 



 

Figure 13—Correlation peak for PRN#18 detection 

The initial carrier frequency estimate (IF + Doppler) was 

found by removing the C/A code from several 
milliseconds of sampled data and then frequency 

transforming the result, looking for a spectral peak.  

Figure 14 reveals a peak of 4.1304 MHz + 2584.0 Hz. 

 

 

Figure 14—Frequency-domain view of carrier for PRN #18 

For the purposes of tracking the signal, the initial code 

phase and carrier frequency estimates are passed to the 

pipeline components during initialization. A thread is 

created and attached to the main component collection for 

each PRN detected in the signal. 
 

The output from the PLL, shown in Figure 15, is taken 

every millisecond and forwarded to the demodulator 

component. The normalized value is then converted to an 

appropriate binary one or zero at the expected data rate.   

 

 

Figure 15—Navigation data signal from PLL output 

At 50 bps and using the mapping of {-1, +1} → {1, 0} the 

signal of Figure 15 corresponds to the output of ten data 
bits {0110100101}. 

FUTURE WORK & GENERAL CONSIDERATIONS 

The tracking loop as tested and presented consists of only 

the most basic processing techniques and requires more 
sophisticated optimization and improvements to enhance 

the overall performance characteristics. However, by 

exploiting the integration intention of the framework, the 

methods of [7], or other better ideas for PLL and DLL 

tracking loops for example, can be incorporated. 

 

The reference receiver needs the integration of almanac 

and other support material to aid in the initial detection 

process. There currently is no ability to make or 

incorporate in-view satellite predictions based on last 

known location and time-of-day information.  
 

Many of the list or collection types in the framework 

could benefit from the definition of C# generics or 

templates to simplify the process of creation of new 

components. 

 

The development of a receiver pipeline graphical design 

utility will eventually be included as an essential part of 

the framework. Such a utility will assist in the 

visualization of the interconnections between the 

components and their event sources. 

 
Some future considerations for software receivers include 

the design of front-end hardware that downconverts the 

input signal to a frequency that is closer to baseband in 

order to reduce the workload on the PC processor, and at 

the same time increasing the sampling rate as a factor of 

the IF requirement. Simply satisfying the Nyquist rate for 

choosing the sampling rate is not sufficient for many 

control-related applications. Increasing the sampling rate 

improves the stability and tracking capabilities of DLL 

and PLL loops [10]. The differences in the stability 

analysis of analog phase-lock loops (APLLs) and their 
discrete counterparts (DPLLs) are discussed for first and 



second-order systems in [12]. A baseband software 

processor for GPS was developed and evaluated in [16] 

using an IF of ≈20 kHz and a sampling rate of ≈2 MHz. 

 

Many of the texts and references separate their 

discussions on the process of satellite signal acquisition 
from that of acquired signal tracking. The usual software 

model is that acquisition finds the PRN sequences 

corresponding to satellite transmissions in the incoming 

signal, and then returns a collection of objects for the 

tracking loops to follow over time. Tracking each 

detected satellite on an individual dedicated thread 

appears to be a good idea, but there is a great deal of 

variability in the starting time of a thread from its point of 

creation. The purpose of accurately finding the sub-

millisecond C/A-code delay in the acquisition stage is lost 

when it takes 1-5 milliseconds for the tracking thread to 

begin execution. The transition between acquisition and 
tracking, therefore, must be viewed as a basic change of 

state in a continuous operation rather than a step in a 

longer sequential process. Methods need to be developed 

that support the seamless transition from acquired signal 

to tracked satellite. 

 

The time-domain versions of acquisition processes 

generally require an excessive length of time in order to 

run. Frequency-based circular correlation methods for 

finding the initial code-phase parameter will require the 

incorporation of the output from a hardware counter 
resource that can serve as a relative timestamp for the 

incoming samples. The current code delay may then be 

calculated from the initial delay provided by the 

acquisition stage by using the difference in the counter 

values. Newer PC system boards include a High-

Performance Event Timer (HPET) for multi-media time 

reference purposes, which could also be used for front-

end signal sampling and timing. 

 

The allocation of large blocks of memory for storing 

signal samples takes time and processor clock-cycles to 

achieve. These ―background‖ system activities are usually 
unaccounted for, but need to be recognized in the overall 

receiver workload. 

 

Finally, the flexibility of the receiver framework allows 

for a binary file to serve as the source for an input signal. 

Configuring the signal classes with the required 

information on the signal properties, such as IF and 

sample-rate, could be done automatically if there were an 

agreement on the establishment of a binary file format 

that defines an embedded header for holding an 

information structure that includes byte-ordering (endian-
ess), sample-rate, and other information required for 

cross-platform and hardware compatibility. 

CONCLUSION 

Due to the complexity of modern microprocessors used in 
PC-based computing systems, achieving real-time 

software GNSS receiver operation will require algorithms 

with high-degrees of parallelism and carefully designed 

interprocess synchronization strategies. The nature of this 

work requires more than an overall optimization effort on 

the part of application and algorithm implementers. 

 

This paper has provided an introduction to the on-going 

development of a real-time software GNSS receiver 

research framework. The design of the system eliminates 

the need for parallel access to large signal data structures 

and the requirement of creating multiple copies of objects 
in memory for parallel access across multiple processes. 

 

Using a block-diagram model and a pipeline signal 

processing approach, the framework allows the 

development and testing of both software and hardware 

concepts in a consistent unified manner. An object-

oriented implementation maximizes the potential for 

component re-use and enhances the system’s extensibility 

benefits. 

 

The interoperability features of the framework allow for 
the integration of multiple types of component 

implementations from different solution sources. 

Combining  individual efforts in such a manner allows for 

the best-of-everything system development model 

necessary to meet  required performance objectives. 
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