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ABSTRACT 
 

This paper summarizes a new quality control method 
including a new cycle-slip correction method which 
enables instantaneous correction (i.e., using only current 
epoch’s GPS carrier-phase measurements) at the data 
quality control stage and a new approach for the 
stochastic model for kinematic GPS positioning which 
can be derived directly from the observation time series 
under a simple assumption. The method was originally 
developed for real-time kinematic applications which 
require high integrity and consistent high-precision 
positioning results with the carrier-phase measurements. 
 
INTRODUCTION 
 

In order to attain consistent high-precision positioning 
results with GPS carrier-phase measurements, errors 
unspecified in a functional or stochastic model (errors of 
omission) must be correctly detected and removed or 
otherwise handled at the data processing stage. Such 
errors in the carrier-phase measurements may include 
cycle slips, receiver clock jumps, multipath, diffraction, 
ionospheric scintillation, etc. Reliability, which refers to 
the ability to detect such errors and to estimate the effects 
that they may have on a solution, is one of the main issues 
in quality control. Texts containing detailed discussions of 
this topic include those by Leick [1995] and Teunissen 
and Kleusberg [1998]. A comprehensive investigation of 
quality issues in real-time GPS positioning has been 
carried out by the Special Study Group (SSG) 1.154 of 
the International Association of Geodesy (IAG) during 
1996-1999 [Rizos, 1999]. 

 
The effects of cycle slips and receiver clock jumps can 

be easily captured either in the measurement or parameter 
domain due to their systematic characteristics. Their 
systematic effects on the carrier-phase measurements can 
be almost completely removed once they are correctly 
detected and identified. On the other hand, multipath, 

diffraction, ionospheric scintillation, etc. have temporal 
and spatial characteristics which are more or less quasi-
random. These quasi-random errors cannot be completely 
eliminated and must be handled using a rigorous 
mathematical approach such as data snooping theory 
[Baarda, 1968]. However, statistical testing and reliability 
analysis can only be efficient if the stochastic models are 
correctly known or well approximated. 

 
In general, the stochastic model is involved in three 

stages of the GPS data processing – the quality control of 
the measurements, the ambiguity resolution, and the least-
squares estimation. If the stochastic model is not correct, 
the quality control process used to detect and fix cycle 
slips (and errors) in L1 and L2 carrier-phase observations 
may not work correctly. The result of faulty cycle-slip 
fixing can be a disaster in the applications using GPS 
carrier-phase observations because it introduces artificial 
biases into the observations and subsequently, the 
estimated parameter values. An incorrect stochastic model 
also makes it difficult to resolve correct ambiguities. If 
the resolved ambiguities are not correct, similar effects to 
the faulty cycle-slip fixing are transferred to the parameter 
values. Compared with the effect of the faulty cycle-slip 
fixing and incorrect ambiguities on least-squares solutions, 
that of an incorrect stochastic model is less important. 
However, the quality of the solutions can be interpreted as 
too optimistic or conservative if an incorrect stochastic 
model is used. 

 
As has been experienced, quasi-random errors 

(multipath, diffraction, ionospheric scintillation, etc.) are 
often mixed with systematic ones (cycle slips and receiver 
clock jumps) in real world situations. One reasonable 
approach for handling errors in such situations is to 
separate the systematic ones from the quasi-random ones. 
Estimating the quasi-random errors after removing the 
systematic ones can provide more reliable results in terms 
of least-squares estimation. This is the main idea 
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implemented in our quality control algorithm including 
cycle-slip correction. 

 
CORRELATION IN THE OBSERVATION TIME 
SERIES 

 
When we talk about the stochastic model, we are 

usually interested in a fully populated variance-covariance 
matrix. To obtain this matrix, we have to take into 
account correlation in the observation time series. Three 
typical physical correlation types exist in the GPS 
observations: First, cross-correlation which represents the 
correlation between different observation types (e.g., L1 
and L2 carrier-phase, and C1, P1 and P2 pseudorange). 
Second, temporal correlation which represents the 
correlation between sequential observations (epoch to 
epoch). Third, spatial correlation which represents the 
correlation among ‘all-in-view’ simultaneous 
observations. Another possible physical correlation is 
inter-channel correlation which may exist among the 
receiver channels. If we use a differencing scheme in the 
measurement domain, mathematical correlation also 
exists. 

 
It may be helpful to classify the correlation types in 

terms of correlation sources. The temporal and spatial 
correlations are due to biases such as atmospheric effects 
(i.e., ionosphere and troposphere), satellite orbit bias, 
multipath and so on. On the other hand, the cross-
correlation and inter-channel correlation are due to the 
receiver signal processing methods. 
 

As we usually experience, correlation makes it 
difficult to obtain a correct stochastic model. However, 
correlation is not always so bad because some biases can 
be cancelled due to correlation in the observation time 
series. For example, spatially correlated biases can be 
cancelled by differencing the observations in the 
measurement domain. The single- and double-difference 
are such cases. Applying the same concept, temporally 
correlated biases can be cancelled by differencing the 
observations in the time domain (e.g., triple-, quadruple- 
and quintuple-difference). We take advantage of these 
concepts in estimating the stochastic model in our 
approach.  
 
ANOMALOUS OBSERVATION DATA 
 

The quality of GPS positioning is dependent on a 
number of factors. To attain high-precision positioning 
results, we need to identify the main error sources 
impacting on the quality of the measurements. In terms of 
data processing, receiver clock jumps, cycle slips and 
quasi-random errors are the main sources which can 
deteriorate the quality of the measurements and 
subsequently, the quality of positioning results. 

 
Receiver Clock Jumps 

 
Most receivers attempt to keep their internal clocks 

synchronized to GPS Time. This is done by periodically 
adjusting the clock by inserting time jumps. The actual 
mechanism of how the clock in a particular 
manufacturer's receiver is adjusted is typically proprietary. 
However, like cycle slips, their effects on the code and 
phase observables are more or less known to users and 
hence it is possible to remove their effects almost 
completely. At the moment of the clock correction, two 
main effects are transferred into the code and phase 
observables as illustrated in the following equation: 
 
 ( ) ( ) ( )t t t cρΨ + ∆ ≈ Ψ + Ψ ⋅∆ ≈ Ψ + ⋅∆ − ⋅∆, (1) 
 
where Ψ  represents the carrier-phase (or pseudorange) 
measurements (in distance units) and Ψ  its time rate of 
change; ∆  is the clock jump (in time units) which is 
assumed to be a very small value (e.g., less than or equal 
to one millisecond); ρ  is the geometric satellite-receiver 
range rate (in distance per time units); and c is the 
vacuum speed of light. The effects of the geometric range 
corresponding to the clock jump ( c ⋅ ∆ ) are common to all 
measurements at the moment of the clock jump at one 
receiver. By single-differencing (SD) the measurements 
between satellites or double-differencing (DD) the 
measurements (that is, differencing between receivers 
followed by differencing between satellites or vice versa), 
the common effects can be removed. However, the effects 
of the geometric range rate corresponding to the jump 
( ρ ⋅∆ ) are different for each observation. They cannot be 
removed by the SD operation. Instead, Doppler frequency 
or carrier-phase difference measurements should be used 
for correcting such effects. The clock jumps can be easily 
detected in both the measurement and parameter domains. 
 

Two typical examples of receiver clock jumps are 
illustrated in Figures 1 and 2. The first example is a 
millisecond jump which occurred in the Ashtech Z-12 as 
seen in Figure 1. The top panel shows the receiver clock 
offsets estimated by the C/A-code pseudoranges and 
reveals that the millisecond jumps occurred about every 7 
minutes. As was explained previously, the effects on the 
geometric range corresponding to the jumps are removed 
in the DD measurements. However, the effects on the 
geometric range rate corresponding to the jumps still 
remain in the DD measurements. The spikes in the TD 
time series, as seen in the middle and bottom panels, 
disclose the significance of such effects. Using the 
Doppler frequency, such effects can be easily estimated 
and removed. The second example is a very small clock 
jump which occurred in the Navcom NCT-2000D as seen 
in Figure 2. The top panel shows the receiver clock offset 
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estimates including the microsecond-level jumps which 
occur every second. Since the jumps are so small, the 
effects of the geometric range rate corresponding to the 
jumps seem to be buried in the noise of the TD 
measurements; i.e., the TD time series would not reveal 
the spikes as verified in the middle and bottom panels. 
However, it should be noted that such effects could reach 
the level of a few centimetres when a satellite is close to 
the horizon and at the same time the receiver experiences 
high dynamics. Without correcting for such effects, we 
may have difficulty in fixing cycle slips and subsequently, 
in overall quality control of the carrier-phase 
measurements. 

 

Fig. 1 – Effects of the receiver clock jumps (Ashtech Z-
12): the receiver clock offset estimates (top); and the L1 
and L2 TD measurements disclosing the effects of the 
geometric range rate corresponding to the jumps (middle 
and bottom). The number in square brackets is the GPS 
Time of first observation. Vertical axis scale for TD 
values is normalized using the observation sampling 
interval (dt). 
 

Fig. 2 – Effects of the receiver clock jumps (Navcom 
NCT-2000D): the receiver clock offset estimates (top); 
and the L1 and L2 TD measurements hiding the effects of 

the geometric range rate corresponding to the jumps 
(middle and bottom). 
 
Quasi-random Errors 

 
Multipath, diffraction, ionospheric scintillation, etc. 

may be the main sources of quasi-random errors, which 
are apt to be omitted in the functional and stochastic 
models. Since least-squares estimation, when errors are 
present, tends to hide (reduce) their impact and distribute 
their effects throughout the entire set of measurements, it 
is better to handle cycle slips and clock jumps separately 
from quasi-random errors. To detect and remove quasi-
random errors, we have to test a null hypothesis (that is, 
no errors in the measurements) against an alternative 
hypothesis which describes the type of mis-specifications 
in the models. 
 

Quasi-random errors usually make it difficult to fix 
cycle slips correctly. Since the cycle slip constraint of 
discontinuities of an integer number of cycles does not 
apply to quasi-random errors, fixing cycle slips is a big 
challenge when systematic and quasi-random errors are 
interspersed. One typical example of signal diffraction 
due to obstructions is illustrated in Figures 3 through 5. 
Figure 3 shows that one satellite (PRN 21) was 
temporarily (for about 2 minutes) blocked by the 
penthouse on the roof of Gillin Hall at the University of 
New Brunswick. (Head Hall data acquired during the 
period of obstruction on Gillin Hall has been deleted in 
the bottom panel) Rapid signal degradation at the moment 
of signal obstruction as seen in the middle panel implies 
that there could be significant deterioration in the quality 
of the measurements. On the other hand, Figure 4 shows 
that the other satellite (PRN 27), which was used with 
PRN 21 in generating the DD measurements, did not 
suffer from such effects. This appears to confirm that the 
spikes in the TD measurements seen in Figure 5 were due 
to signal diffraction. 

Fig. 3 – Signal degradation due to diffraction (middle). 
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Fig. 4 – Normal (i.e., not problematic) signal reception 
situations confirmed by the satellite elevation angles and 
C/N0 values. 

 

Fig. 5 – Effects of signal diffraction in the L1 and L2 TD 
measurements. 
 
Cycle Slips 

 
Cycle slips are discontinuities of an integer number of 

cycles in the measured (integrated) carrier phase resulting 
from a temporary loss-of-lock in the carrier tracking loop 
of a GPS receiver. In this event, the integer counter is re-
initialized which causes a jump in the instantaneous 
accumulated phase by an integer number of cycles. Three 
causes of cycle slips can be distinguished [Hofmann-
Wellenhof et al., 1999]: First, cycle slips are caused by 
obstructions of the satellite signal due to trees, buildings, 
bridges, mountains, etc. The second cause of cycle slips is 
a low signal-to-noise ratio (SNR) or alternatively carrier-
to-noise-power-density ratio (C/N0) due to severe 
ionospheric conditions, multipath, high receiver 
dynamics, or low satellite elevation angle. A third cause is 

a failure in the receiver software which leads to incorrect 
signal processing. 

 
Cycle slips in the phase data must be corrected to 

utilize the full measurement strength of the phase 
observable. The process of cycle-slip correction involves 
detecting the slip, estimating the exact number of L1 and 
L2 frequency cycles that comprise the slip, and actually 
correcting the phase measurements by these integer 
estimates. Cycle slip detection and correction requires the 
location of the jump and the determination of its size. It 
can be completely removed once it is correctly detected 
and identified. 

 
PREVIOUS WORK ON STOCHASTIC MODELING 
 

A brief review in terms of advantages and 
disadvantages of the previous work on stochastic 
modeling which has been carried out by many research 
groups all over the world will be useful in figuring out the 
problems related to particular GPS applications such as 
short-baseline or long-baseline situations, static or 
kinematic mode, and real-time or post-processing 
operations. There are several approaches which provide 
somewhat realistic stochastic models: the elevation-angle 
dependent function approach [Euler and Goad, 1991; Jin, 
1996]; the SNR or alternatively C/N0 approach [Hartinger 
and Brunner, 1998; Barnes et al., 1998; Collins and 
Langley, 1999]; the least-squares adaptation approach 
[Han, 1997; Wang et al., 1998; Wang, 1999; Tiberius and 
Kenselaar, 2000]. Fundamental discussions on the 
observation noise were given by Langley [1997] and 
Tiberius et al. [1999]. 

 
The elevation-angle dependent function approach 

takes into account the elevation-angle dependence of the 
observation noise. This approach is easy to implement in 
data processing software as long as the parameters of the 
function are calibrated in the laboratory. However, this 
approach does not provide information on cross-
correlation and spatial correlation. This means that we 
cannot get the fully populated variance-covariance matrix 
from the approach. Furthermore, it should be noted that 
the elevation-angle dependence of the observation noise 
often varies with the particular kinematic situation. The 
elevation-angle dependence of the observation noise is 
induced mainly by the receiver antenna’s gain pattern, 
with other factors such as atmospheric signal attenuation 
(spacecraft antenna beam-shaping ensures an almost 
uniform signal field strength independent of elevation 
angle). The elevation angle is normally computed with 
respect to the local geodetic horizon plane at the antenna 
phase center regardless of the actual orientation of the 
antenna. Accordingly, the relationship between antenna 
gain and the signal elevation angle may be difficult to 
assert when the antenna orientation is changing which can 
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happen often in kinematic situations. 
 
The SNR (or alternatively C/N0) approach provides 

actual observation noise information which can be 
derived directly from measurements of the quality of each 
pseudorange and carrier-phase observation. This 
information is contained in the SNR measurement. This 
value determines, in part, how well the receiver’s tracking 
loops can track the signals and hence (to a large degree) 
how precisely the receiver obtains pseudorange and 
carrier-phase observations [Langley, 1997]. Since 
multipath signals can adversely impact the receiver SNR 
depending on whether the direct and reflected signal 
components reaching the receiver combine constructively 
or destructively [Cox et al., 1999], this approach does 
provide realistic observation noise in strong multipath 
environments. This may be a good approach for the 
precise point positioning (PPP) technique in which there 
is not enough redundancy to mitigate the effect of 
multipath except by down-weighting. Although some 
GPS receiver manufacturers provide SNR values in their 
data streams, meaningful SNR values are not always easy 
to come by (see Collins and Langley [1999]). 
Furthermore, this approach also does not provide the fully 
populated variance-covariance matrix. 

 
The least-squares adaptation approach, which can be 

incorporated within a recursive processing scheme such 
as the Kalman filter and the sequential least-squares 
estimator, generally provides optimal stochastic models. 
In addition, it is easy to obtain information for the cross-
correlation and spatial correlation from the approach. 
However, the optimality of the least-squares estimation is 
not always guaranteed because it depends on assumptions 
on correlation: e.g., no temporal correlation or a certain 
order of temporal correlation. The estimates can be too 
optimistic or conservative if the assumptions are not 
satisfied. Furthermore, there are particular applications 
where no observation redundancy is provided. In long-
baseline applications, typically we cannot get observation 
redundancy as long as we take into account all significant 
biases in the functional model. In such situations, the 
least-squares adaptation approach will not work. 
 
OBSERVATION NOISE ESTIMATION USING 
DIFFERENCING IN THE TIME DOMAIN 
 

Basically, we try to overcome the three main problems 
of the existing approaches (i.e., lack of a fully populated 
variance-covariance matrix, missing temporal correlation, 
and no observation redundancy in long-baseline 
applications) in our approach. We assume that DD 
observation time series are given. Hereafter, we will leave 
out the notation of DD (or ∇∆ ) for the observations, 
biases and errors. In short-baseline situations, the effects 
of the (correlated) biases are usually ignorable. 

Accordingly, temporal correlation is ignorable in 
estimating the stochastic model because temporal 
correlation reflects mainly the behaviour of the biases 
(although observation smoothing by the receiver will 
introduce some temporal correlation in observation 
noise). However, it should be noted that the effect of the 
double-differenced multipath is not always ignorable even 
in short-baseline situations. In other words, temporal 
correlation may exist depending on multipath 
environments. In long-baseline situations, the biases are 
not ignorable, so that temporal correlation usually exists 
in the observation time series. 

 
To remove the non-random behaviour of the 

observation time series, we use a differencing scheme in 
the time domain including the triple-difference (TD; 
differencing consecutive observations after deleting 
cycle-slip spikes), quadruple-difference (QD; differencing 
consecutive TD observations), quintuple-difference 
(dQD; differencing consecutive QD observations), and so 
on. In this approach, we assume that the effects of any 
biases can be canceled in the differencing process, so that 
only the effect of observation noise (assumed as white 
noise) remains in the resulting time series. This 
assumption can be justified as long as we can obtain time 
series with a sufficiently short sampling interval. If the 
observation time series samples are obtained with a 
smaller time interval (i.e., a higher data rate) than the time 
constant of each component of the biases, the assumption 
can be easily satisfied. This reasoning is based on the fact 
that differences are generated by subtractive filters. These 
are high-pass filters damping low frequencies and 
eliminating constant components. High frequency 
components are amplified. 

 
There exist two degrees of freedom in our approach: 

i.e., the order of the differencing and the data rate must be 
determined in terms of optimality. In general, increasing 
the order of the differencing continuously is pointless 
because the time-correlated biases are easily canceled at a 
low order. The dQD differencing is sufficient for almost 
all situations according to our analyses. On the other hand, 
the optimal data rate is usually dependent on particular 
applications such as static, low-dynamics kinematic, and 
high-dynamics kinematic applications. Although 
determining the optimal data rate is more or less arbitrary, 
there is a general rule which can be understood in terms 
of the physics inherent in the differencing process: i.e., 
the data rate should be high enough to make each 
component of the biases temporally correlated. If the 
effects of high-frequency (compared with the data rate) 
components of the biases are significant in the time series, 
the data rate should be increased to cancel the effects of 
such components in the differencing process. Most 
problematic high-frequency component in our approach is 
the jerk of the geometric range due to moving platform 
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dynamics. Taking a look at the problem in terms of a 
numerical process, we can get a better insight into how to 
come up with a solution to the problem. For example, 
consider the L1 carrier-phase dQD observable: 
 
 1 1 1 1s I b nρ τ εΦ = + + − + + + , (2) 
 
where 1Φ  stands for the double-difference L1 observable; 
ρ  for the geometric range; s for the satellite orbit bias; τ  
for the tropospheric delay; I for the L1 ionospheric delay; 
b1 for multipath in L1 carrier phase; n for the ambiguities 
(in distance units); and 1ε  for observation noise of the L1 
carrier phases. Using the one-dimensional Taylor series 
including higher-order time derivatives for each of the 
biases, we have 
 

 
1 2

0 0 0 0 02
1 3

0 06

( ) ( ) ( )( ) ( )( )

( )( ) ( ),

S t S t S t t t S t t t

S t t t R t

′ ′′= + − + −

′′′+ − +
 (3) 

 
where S represents each biases and R is a remainder term 
known as the Lagrange remainder. Assuming that the 
observation time interval is 0( )t tδ = − , we have the 
following dQD observable: 
 

 3 3 2 1 0

3
0 3

( ) ( ) 3 ( ) 3 ( ) ( )

( ) ( ) ,R

S t S t S t S t S t

S t tδ
= − ⋅ + ⋅ −

′′′= +∑
 (4) 

 
where 3( )R t∑  is the effect of dQD for the remainder R. 
Substituting Eq. (4) into (2) gives 
 

 [ ]3
1 3 0 3 1 3( ) ( ) ( ) ( )R

S S
t S t t tδ ε

∀ ∀

 ′′′Φ = + ∑ +  
∑ ∑ , (5) 

 
where 
 
 [ ]0 1 1 0( ) ( )

S

S t s I b n tρ τ
∀

′′′ ′′′ ′′′ ′′′ ′′′ ′′′ ′′′= + + − + +∑ . (6) 

 
Eqs. (5) and (6) clearly show the relationship between 

the high-frequency components and the data rate in the 
differencing process. If the effects of the high-frequency 
components in the right-hand side of Eq. (6) are small 
enough to be ignorable and/or the data rate (1/δ) is high in 
Eq. (5), and if the effect of the second term in the right-
hand side of Eq. (5) (i.e., the effect of dQD for the 
remainder R) is also small enough to be ignorable, we can 
get an acceptable inference as: 
 
 1 1εΦ ≈ . (7) 
 

As long as the differencing process satisfies Eq. (7), 
the fully populated variance-covariance matrix for the 
dQD observation noise 1ε  can be easily estimated using n 
dQD samples for each double-difference satellite pair 
time series: 

 
 [ ]ˆ cov=dQDQ dQD , (8) 

 
where ,i jdQD =  dQD ; subscript i stands for a sample 
number (epoch); subscript j identifies a particular double-
difference satellite pair time series number; and  [ ]cov ⋅  is 
the variance-covariance operator. Since there exists a 
certain relationship between the original time series and 
the dQD time series as shown in Eq. (4), assuming that 
four consecutive L1 observations have the same variance, 
the fully populated variance-covariance matrix for the 
observation noise also can be estimated: 
 

 1ˆ ˆ
20

=DD dQDQ Q . (9) 

 
Note that the size of samples n should be determined 

in terms of the unbiasedness of the estimates. In general, 
the larger the size of samples, the better the estimates. 
However, there may be a trade-off to some degree in real-
time implementation. 
 

We have justified our approach using test data sets 
obtained in a variety of situations [Kim and Langley, 
2001a]. Based on our justification, we estimated fully 
populated variance-covariance matrices for observation 
noise and compared the results with those of the C/N0 
approach. A typical example is illustrated in Figure 6.  
 

Fig 6 – Observation noise estimation: The red line is the 
estimates for L1(C1) and the blue line for L2(P2). 
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Several comments should be given to understand 
observation noise estimation figures: First, when we 
estimate observation noise using the C/N0 approach (i.e., 
the top two plots in each figure), we must know at least 
two factors correctly – a conversion equation between the 
receiver’s SNR output and the C/N0, and the signal 
tracking loop bandwidths. We used the published SNR-to-
C/N0 conversion equation for the Ashtech Z-12 receiver. 
However, we did not have available the correct 
information for the signal tracking loop bandwidths. 
Therefore, we used an example value (the same value for 
L1, L2, C1 and P2) given in Langley [1997]. The effect of 
incorrect values for signal tracking loop bandwidths, 
however, just scales the true values. This means that the 
pattern of the original estimates holds. Second, to justify 
the effect of platform dynamics, we estimated observation 
noise using the time series of the geometry-free (GF) 
linear combinations for carrier-phase and pseudorange 
(i.e., the bottom two plots in Figure 6), which are free 
from platform dynamics. 

 
QUALITY CONTROL WITH AN 
INSTANTANEOUS CYCLE-SLIP CORRECTION 
TECHNIQUE 
 

One of the various methods for detecting and 
identifying cycle slips is to obtain the TD measurements 
of carrier phases first. By triple-differencing the 
measurements, biases such as the clock offsets of the 
receivers and GPS satellites, and ambiguities can be 
removed. In most GPS applications, regardless of 
surveying mode (static or kinematic) and baseline length 
(short, medium or long), the effects of the triple-
differenced biases and noise (i.e., atmospheric delay, 
satellite orbit bias, multipath, and receiver system noise) 
are more or less below a few centimetres in size as long as 
the observation sampling interval is relatively short (e.g., 
sampling interval less than 1 minute). There could be 
exceptional situations such as an ionospheric disturbance, 
extremely long baselines, and huge (rapid) variation of 
the heights of surveying points in which the combined 
effects of the biases and noise can exceed the wavelengths 
of the L1 and L2 carrier phases. However, such situations 
can be easily controlled through adjusting the sampling 
rate so that the combined effects of the biases and noise 
can be reduced to a level below a few centimetres. 

 
When the estimates of the TD geometric ranges are 

available either from the Doppler frequency or TD 
pseudoranges, we can obtain reliable cycle-slip candidates 
using the first two moments of the TD carrier-phase 
prediction residuals (that is, differences between the TD 
carrier-phase measurements and the estimates of the TD 
geometric ranges). When dual-frequency carrier phases 
are available, we can reduce, to a large extent, the number 
of cycle-slip candidates using the TD geometry-free phase 

(a scaled version of which is called the differential 
ionospheric delay rate). 
 
Cycle-Slip Validation 

 
Fixing cycle slips in the TD measurements is 

conceptually the same problem as resolving ambiguities 
in the DD measurements. Consider the linearized model 
of the TD observables: 
 

 
[ ]

, ,
,

n u

Cov
= + + ∈ ∈

=
y Ac Bx e c x

y Q
 (10) 

 
where y is the 1n×  vector of the differences between the 
TD measurements and their computed values; n is the 
number of measurements; c is the 1n×  vector of the 
cycle-slip candidates; x is the 1u ×  vector of all other 
unknown parameters including position and other 
parameters of interest; u is the number of all other 
unknowns except cycle slips; A and B are the design 
matrices of the cycle-slip candidates and the other 
unknown parameters; e is the 1n×  vector of the random 
errors. The first step for cycle-slip validation is to search 
for the best and second best cycle-slip candidates which 
minimize the quadratic form of the residuals. The 
residuals of least-squares estimation for cycle-slip 
candidates are given as: 
 
 ˆ ˆ′= −v y Bx , (11) 
 
where 
 

 ( )ˆ .

′ = −

′=
-1T -1 T -1

y y Ac

x B Q B B Q y
 (12) 

 
Then, discrimination power between two candidates is 

measured by comparing their likelihood. We follow a 
conventional discrimination test procedure similar to that 
described by Wang et al. [1998]. A test statistic for cycle-
slip validation is given by 
 
 d = Ω − Ωc1 c2 , (13) 

 
where Ωc1  and Ωc2  are the quadratic form of the 
residuals of the best and second best candidates. A 
statistical test is performed using the following null and 
alternative hypotheses: 
 
 [ ] [ ]0 1: 0, : 0H E d H E d= ≠ . (14) 
 

A test statistic for testing the above hypotheses is 
given by 
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= , (15) 

 
where 
 

 [ ] ( ) ( )4

.

Cov d = − −

= −

T -1
1 2 c 1 2

-1 -1 -1 T -1 -1 T -1
c

c c Q c c

Q Q Q B(B Q B) B Q
 (16) 

 
If y is assumed as having a normal distribution, d is 

normally distributed. Therefore, W has mean 0 and 
standard deviation 1 under the null hypothesis. Adopting 
a confidence level ,α  it will be declared that the 
likelihood of the best cycle-slip candidate is significantly 
larger than that of the second best one if  
 
 ( )0,1;1W N α> − . (17) 
 

Finally, a reliability test is carried out after fixing 
cycle slips in order to diagnose whether errors still remain 
in the measurements. Figure 7 depicts our quality control 
algorithm including cycle-slip correction. 
 

 
Fig. 7 – Quality control of the carrier-phase 
measurements in conjunction with an instantaneous cycle-
slip correction routine (steps labelled in italics). 

 
 

We have tested our approach using data sets recorded 
in a variety of situations [Kim and Langley, 2001b]. Two 
aspects have stood out in the tests. First, the approach is 
capable of instantaneous cycle-slip correction. This means 
that it is suitable for real-time applications, not only for 
post-processing. Second, the approach can handle cycle 
slips in low quality measurements. Unlike conventional 
approaches, therefore, we do not have to discard the 
measurements obtained at low elevation angles and from 
weak signals with low C/N0 values. As a result, our 
approach tends to increase observation redundancy and 
hence system performance (e.g., integrity, continuity, 
accuracy and availability) is improved. A typical example 
which shows the performance of our approach is 
illustrated in Figures 8 through 10. Figures 8 and 9 show 
the two satellites which were used in generating the DD 
measurements. They were observed more or less at high 
elevation angles. However, the signal of one satellite 
(PRN 8) was heavily affected by what appears to be 
ground-bounce multipath as seen in Figure 8. While the 
L1 signal was still fairly strong in such situations, the L2 
signal was fading quickly and automatic gain control 
attempted to compensate for the low gain situation. As a 
result, we can see L2/P2 C/N0 gain jumps in the middle 
and bottom panels. Figure 10 shows that the L1 and L2 
TD measurements were contaminated by many cycle slips 
(the first and third panels) and confirms that our approach 
fixed them perfectly (the second and fourth panels). 

 

Fig. 8 – Signal degradation due to multipath. 
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Fig. 9 – Normal (i.e., not problematic) signal reception 
situations confirmed by the satellite elevation angles and 
C/N0 values. 
 
 

Fig. 10 – Performance of instantaneous cycle-slip 
correction. 
 
 
CONCLUSIONS 
 

Over the past decade, a number of methods have been 
developed to handle errors in the carrier-phase 
measurements. There are, in large, two main research 
streams in this area: cycle-slip-related research and 
quality-control-related research. The former focuses 
mainly on cycle slips and takes advantage of the 
systematic characteristics of cycle slips, more or less 
ignoring the effects of the other errors. As a matter of 
fact, cycle slips are the biggest error source if they remain 
in the carrier-phase measurements. On the other hand, the 
latter approach considers that all biases and errors must be 
detected by a rigorous statistical test such as the reliability 
test. This approach tends more or less not to utilize the 
advantage taken by the former. We use a hybrid method 
for quality control: systematic errors such as cycle slips 

and receiver clock jumps are examined and corrected 
first; then, a reliability test is carried out to reduce the 
effects of quasi-random errors. 

 
Three main features differentiate our approach from 

conventional techniques. First, our approach is suitable 
for kinematic applications either in real-time or in post-
processing mode. Unlike conventional approaches such as 
a sequential least-squares estimator or Kalman filter 
which uses the prediction values of the measurements for 
quality control, our approach does not require them. 
Instead, it utilizes only the current epoch's measurements 
for quality control. Therefore, the approach can attain 
high performance even when a receiver platform is 
maneuvering. Second, the approach can handle cycle slips 
in low quality measurements, so that we do not have to 
discard the measurements obtained at low elevation 
angles and from weak signals with low C/N0 values. As a 
result, the approach tends to increase observation 
redundancy and hence system performance in terms of 
integrity, continuity, accuracy and availability is 
improved. Third, the approach enables us to determine 
system performance by simply assigning the confidence 
level of the parameters for cycle-slip candidates when 
designing the system. 

 
Tests carried out in a variety of situations including 

static and kinematic modes, short-baseline and long-
baseline situations, and low and high data rates have 
confirmed the high performance of our approach. A 
worst-case simulation test has also proved its performance. 
However, we are aware that the same generic (intrinsic) 
limitations as with least-squares estimation still remain in 
our approach; i.e., the need for redundancy and stochastic 
modelling. To increase redundancy, we need to use as 
many measurements as are available in real world 
scenarios. In this case, many problematic situations can 
occur in the measurements, particularly ones obtained at 
low elevation angles and from weak signals with low 
C/N0 values. As mentioned previously, our approach 
indeed works well in such situations. Finally, statistical 
testing and  reliability analysis can only be efficient if the 
stochastic models are correctly known or well 
approximated. obtaining a reliable stochastic model is still 
a big challenge. However, the “differencing-in-time” 
method has been successfully tested and implemented in 
our approach, in which we have tried to overcome the 
three main problems of existing approaches in 
determining the stochastic model for GPS observations – 
lack of a fully populated variance-covariance matrix, 
missing temporal correlation, and no observation 
redundancy in long-baseline applications. 
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