SINGLE RECEIVER GPS POSITIONING IN SUPPORT OF AIRBORNE GRAVITY FOR EXPLORATION AND MAPPING UNB

Tomas Beran, Sunil B. Bisnath and Richard B. Langley
Geodetic Research Laboratory • Department of Geodesy and Geomatics Engineering University of New Brunswick, New Brunswick, Canada.

Methodology

Single Receiver GPS Positioning
Combination of ionosphere-free pseudorange and carrier-phase observations in a UNB-developed processor
Relative GPS Positioning
onosphere-free carrier-phase and pseudorange, ambiguity-fixed kinematic processing with a commercial software package. Results provided by KMS Denmark, and used as reference solution. Differentiation for Velocity and Acceleration Third-order central difference of the Taylor series approximation. Single Receiver Versus Relative GPS Comparison Compare determined position, velocity and acceleration.

UNB Point Positioning Software
Simultaneously utilize code data to compute aircraft position, and Sarrier data to compute aircraft position change Primary inputs: dual-frequency code and carrier measurements from aircraft dual-frequency code and carrier measurements from aircraft GPS constellation satellite clock offsets from GPST.

Position, Velocity and Acceleration Comparisons: (Reference) Relative Solution Minus (UNB) Single Receiver Solution

Position Difference

Statistical Analysis

	Mean $[\mathrm{m}]$	r.m.s. $[\mathrm{m}]$	std. dev. $[\mathrm{m}]$
North	-0.80	1.12	0.79
East	0.47	0.75	0.58
Up	-2.47	2.65	0.96

Comments

- Processed first two hours after aircraft ascent.
- Mean flight velocity of $70 \mathrm{~m} / \mathrm{s}$ and flying height of 230 m
- Bias in up-component caused by unmodelled residual
tropospheric delay in point solution and by datum difference.
- Reference relative position solution provided with 50 cm component accuracy

Velocity Difference
Acceleration Difference

Statistical Analysis

Filtering Period	Mean $[\mathrm{mm} / \mathrm{s}]$	r.m.s. $[\mathrm{mm} / \mathrm{s}]$
30 s	-0.4	2.3
60 s	-0.4	2.1
90 s	-0.5	2.0

Comments

- Velocity obtained by numerical differentiation of position solution.
- 30, 60, 90 s are typical filtering periods used in airborne gravity processing.

Statistical Analysis

Filtering Period	Mean [mGal]	r.m.s. [mGal]
30 s	-0.04	6.1
60 s	-0.03	2.3
90 s	-0.03	1.5

Comments

- Acceleration obtained by numerical differentiation of velocity estimates.
- Difference between the two methods at $2 \mathrm{mGal}-\mathrm{level}$ for 30 and 90 s filtering periods.
- Variations are within noise level of airborne GPS-observed vertical acceleration.

Conclusions

- Equivalence of point and relative positioning acceleration estimates indicates that for the data tested our point positioning technique can be used for airborne gravity determination.
- Accuracy of the gravity disturbances is a function of GPS and accelerometer errors. Influence of the second subsystem also has to be considered.
- The advantages of this technique will be found in many aspects such as cost of equipment and baseline length constraints.

Acknowledgements

We would like to thank to GEOIDE Network of Centres of Excellence (project RES\#47) for funding. Also acknowledged are Dr. Rene Forsberg and Mr. Arne Olesen from Kort \& Matrikelstyrensen (KMS) Denmark for the airborne data and reference position solution.

GEOIDE

Networks of Centres of Excellence / Réseaux de centres d'excellence La géomatique pour des interventions et des décisions éclairées / Geomatics for Informed Decisions

