
"Innovation" is a regular column in GPS 
World featuring discussions on recent 
advances in GPS technology and its 
applications as well as on the fundamentals 
of GPS positioning. This month we look at 
some of the mathematics involved in 
determining a position using GPS 
pseudorange measurements. We also 
examine some of the ways of gauging the 
accuracy of GPS positions. 

This column is coordinated by Richard 
Langley and Alfred Kleusberg of the 
Department of Surveying Engineering at the 
University of New Brunswick. We very much 
welcome your comments and suggestions of 
topics for future columns. 

Smart engines, smart ovens, smart cameras. 
We live in a world of microprocessor-con
trolled devices that function with a high de
gree of reliability with little control or 
thought on the part of the consumer. 

Not so many years ago, amateur photog
raphers had to know something about film 
speeds, f-stop and shutter-speed reciprocity, 
and the absorption and reflection of light in 
order to take consistently good pictures. 
They had to manually adjust the controls on 
the camera to match the lighting conditions 
and, of course, focus the lens. With the cam
eras available today, they just have to point 
and shoot. 

If a good picture isn't possible under the 
existing lighting conditions, the camera will 
complain with a beep and may even refuse 
to take the picture unless switched over to 
manual operation. Photographers no longer 
must think carefully about the physical pro-
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cess of capturing the image - they can de
vote all of their talents to the composition of 
the picture. 

Something of the challenge of photogra
phy has clearly been lost in this evolution of 
the machine/operator relationship. Neverthe
less, thinking people will continue to be in
trigued by the photographic process and will 
want to have at least a basic understanding of 
how a camera is able to capture an image on 
a piece of plastic coated with silver halide 
crystals - and how that process can be con
trolled. So it is with GPS. 

The GPS receiver is the latest in a length
ening line of smart machines. In the January 
1991 issue of GPS World, we looked at how 
a GPS receiver works but glossed over how 
the measurements are converted into posi
tions by the microprocessor. Let's take a 
look at that now. 

DETERMINING POSITIONS FROM 
PSEUDORANGES 
The basic measurement made by a GPS re
ceiver is the time required for a signal to 
propagate from a GPS satellite to the re
ceiver. Because the signal travels at the 
speed of light, c, this time interval can be con
verted to a distance simply by multiplying it 
by c. 

Let's assume that the clock in thereceiver 
is synchronized with the clock in the satel
lite, and that the ionosphere and troposphere, 
which slightly delay the arrival of the signal, 
do not exist. Furthermore, let's assume there 
is no measurement noise, that is, no random 
perturbation to the measurement, something 
that invariably affects all measurements to a 
greater or lesser degree. With a single such 
measurement of the distance or range to the 
satellite, we can determine something about 
the position of the receiver: it must lie some
where on a sphere centered on the satellite 
with a radius equal to the measured range, as 
illustrated in the first frame of Figure 1. 
Let's call that distance p 1• 
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If we simultaneously make a range mea
surement to a second satellite, then our re
ceiver must also lie on a sphere, of radius p2, 

centered on this satellite. The two spheres 
will intersect, as shown in the second frame 
of Figure 1, with the locus of intersection 
points forming a circle. Our receiver must lie 
somewhere on this circle, which is called a 
line of position. A third simultaneous range 
measurement, p3, gives us a third sphere that 
intersects the other two at two points only, il-

a) 

b) 

c) 

Figure 1. With synchronized clocks, si
multaneous range measurements to 
three GPS satellites produce a determina
tion of a receiver's position. Each range 
measurement can be portrayed as the 
radius, p, of a sphere centered on a par
ticular satellite, with the intersections of 
additional spheres producing ever fewer 
possible points of receiver location. The 
line of position is represented in b) and c) 
by the perimeter of the shaded area. 

Comment
While the formation of the peudorange equations as given in Figure 3 is self-consistent, it is more common to add the c dT term to the righthand side rather than subtracting it.Although it is standard to linearize the pseudorange equations to obtain a solution, researchers have developed algorithms to directly solve the case of observations from only four satellites without linearization. Application of such an algorithm to cases involving more than four satellites to give a least-squares-like solution is also possible.Although DoD has the capability to intentionally degrade the ephemeris information in the navigation message as part of selective availability (SA) along with satellite clock dithering, there is no evidence that it has used this SA component operationally. SA was set to zero by presidential order on 2 May 2000.While it is true that the larger the tetrahedron formed by the four receiver-satellite unit vectors, the smaller the dilution of precision (DOP), the DOP values are only approximately inversely proportional to the tetrahedron volume.The definition of standard deviation omits mention of the need to compute the mean of the errors and then to subtract this mean from the errors before summing their squares. It is only when the mean error is known to be zero, that the standard deviation and the root-mean-square error are the same.
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Figure 2. Determination of receiver 
clock offset (dT) and true user position 
(intersection of shaded lines) from the in
tersection of spheres centered on the sat
ellites; pseudoranges are shown by arcs 
of solid lines 

Figure 3. The set of basic equations 
for determining user position and re
ceiver clock offset from four pseudorange 
measurements 

lustrated in the third frame of Figure 1. One 
of these points can be dismissed immediately 
as being the location of our receiver because 
it will lie far out in space. So, the simulta
neous measurement of the ranges to three 
satellites provides sufficient information to de
termine a position fix in three dimensions -
at least in principle. 

When we started our analysis, we as
sumed that the clock in the GPS receiver was 
synchronized with the clocks in the satellites. 
This assumption, however, is fallacious. 
When a GPS receiver is switched on, its 
clock will, in general, be mis-synchronized 
by an unknown amount with respect to the sat
ellite clocks. Furthermore, the atomic clocks 
in the satellites are synchronized with each 
other and to a master time scale - called 
GPS time - only to within about a millisec
ond. The range measurements the receiver 

makes are biased by the receiver and satel
lite clock errors and therefore are referred to 
as pseudoranges. 

A timing error of a millisecond would re
sult in an error in position of about 300 
kilometers, clearly an intolerable amount. Sys
tem operators conceivably could better syn
chronize the satellite clocks by frequently 
sending them adjustment commands from 
the ground, but atomic clocks have been 
found to actually keep better time if they are 
left alone and their readings are corrected. 
The United States Naval Observatory moni
tors the GPS satellite clocks and determines 
the offsets and drifts with respect to GPS 
time. These parameters subsequently are 
uploaded to the satellites and transmitted as 
part of the navigation message broadcast by 
the satellites. A GPS receiver uses these sat
ellite clock offset values to correct the mea
sured pseudoranges. 

Nonetheless, we still have the receiver 
clock error to deal with. Because of this er
ror, the three spheres with radii equal to the 
measured pseudoranges corrected by the sat
ellite clock offsets will not intersect at a com
mon point. However, if the receiver clock 
error, dT, can be determined, then the pseu
doranges can be corrected and the position of 
the receiver determined. The situation, com
pressed into two dimensions, is illustrated in 
Figure 2. 

So, we actually have four unknown quan
tities or parameters that we must determine: 
the three coordinates of our position (say, lati
tude, longitude, and height) and the receiver 
clock offset. Now, it is mathematically im
possible to uniquely determine the values of 
four parameters given only three measure
ments. The way out of this conundrum is to 
measure simultaneously an additional pseu
dorange to a fourth satellite. 

But just how does the GPS receiver actu
ally extract the position coordinates and the 
clock offset from the measurements? In the 
software embedded in the GPS receiver is an 
algebraic model that describes the geometri
cal arrangement we've just looked at. For 
each pseudorange measurement, an equation 
can be written that relates the measurement 
to the unknown quantities. The four equa
tions are shown in Figure 3. 

The pseudorange measurement made by 
the receiver, in units of distance, is on the 
left-hand side of each of the equations. The 
expression under the square root sign is the 
true range to the satellite. It is actually a rep
resentation of the sphere centered on coordi
nates x,y,z, the position of the satellite. The 
satellite coordinates are obtained from the 
navigation message. The coordinates X, Y,Z 

represent the position of the receiver. The 
term c dT is the contribution to the pseu
dorange from the receiver clock offset, dT. 

The set of four equations must be solved 
simultaneously to obtain the values for X, Y,Z 
together with the clock offset, dT. Although 
the equations are written in terms of geocen
tric Cartesian coordinates, the resulting 
X,Y,Z values can easily be converted to lati
tude, longitude, and height in any geodetic da
tum or into map grid coordinates. 

Linearization of the pseudorange equations. Be
cause of the squares and square roots in the 
equations, the pseudorange measurements 
are dependent on the receiver coordinates in 
a nonlinear way. Consequently, the equa
tions cannot be solved in the usual fashion 
we all learned in high school. Instead, a pro
cedure known as Newton-Raphson iteration 
is used. In this procedure, each of the equa
tions is expanded into an infinitely long poly
nomial based on a set of trial values or 
guesses for X, Y,Z and dT. Then each series 
is truncated after the first degree term, result
ing in an equation that is linear in incre
mental corrections to the trial values. The 
four linearized equations can then be solved 
simultaneously to determine the values of 
these increments and the trial values adjusted 
accordingly. 

Because the linearized equations are an ap
proximation of the nonlinear ones, this pro
cess, in general, must be iterated, with sub
sequent iterations yielding smaller and 
smaller increments. The final solution is the 
one that satisfies the original nonlinear equa
tions to within an acceptable tolerance. Sev
eral iterations may be required to converge to 
the final solution. However, if the initial po
sition estimate is close to the actual position, 
the GPS pseudorange equations may be 
solved in just one iteration. 

If one or more of the receiver coordinates 
is already accurately known, then the remain
ing coordinates and the receiver clock offset 
can be determined using fewer than four pseu
doranges. For example, say that the height 
of the GPS receiver is known. Then pseu
doranges to three sate IIi tes will suffice to de
termine the two horizontal coordinates and 
the clock offset. To use GPS to synchronize 
a clock at a site with known coordinates, 
only one pseudorange measurement to a sin
gle satellite is actually required. 

Inconsistent equations. What happens when 
more than four satellites are above the GPS 
user's horizon? If the user's receiver can 
only track four satellites at a time, then the 
receiver will have to choose which four sat
ellites to track. We'll have something to say 
about a possible selection method a little 



later on. But if the receiver can track five or 
more satellites simultaneously, then we have 
a situation in which we have more measure
ments than unknowns; that is, we have five 
or more equations, like those in Figure 3, but 
still have only four unknown parameters. 

We cannot solve such a set of equations in 
the same way as we did for the case of four 
observations. Why? So far we have ne
glected the fact that there are other errors in 
our measurements in addition to the satellite 
and receiver clock offsets. The presence of 
these errors means that any subset of four 
measurements taken from the full set will 
produce slightly different solutions. In such 
situations, we say that the system of equa
tions is inconsistent. 

What do we do? We could discard the ex
tra observations, but, although expedient, 
that seems wasteful of data. The best ap
proach is to use a method that was devised 
in the early 1800s by the great German mathe
matician and father of modern geodesy, Karl 

~ Friedrich Gauss - the method of least ~ 
squares. In this method, we obtain a unique 
solution for the unknown parameters that 
best fits all of the measurements. This solu
tion is the one that, when substituted into the 
right-hand side of the pseudorange equa
tions, gives the smallest discrepancies with re
spect to the measurements on the left-hand 
side in a summed squares sense. That is, the 
sum of the squares of the discrepancies is a 
minimum. Without going into the mathemati-
cal reasons for adopting this criterion, we 
can see qualitatively that it assumes that posi
tive and negative discrepancies are equally 
likely to occur and that smaller discrepancies 
are more likely to occur than larger ones. 

POSITION ACCURACY MEASURES 
As we have mentioned, the pseudorange 
measurements are contaminated by the sate!-
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Figure 4. The Gaussian probability dis
tribution function; the shaded area indi
cates a 68 percent probability of an error 
having a value between -1 a and + 1 a 
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Figure 5. Current global GDOPs; constellation value is the percentage of occur
rences for which GDOP is ~6 for a global set of sample points averaged over 24 hours 

lite and receiver clock offsets. Even after solv
ing for the receiver clock offset and correct
ing the pseudoranges for the satellite clock 
offset using the parameters in the navigation 
message, errors still remain in the measure
ments. These errors will, of course, affect 
the accuracy of the position determination. Be
cause these errors will, in general, change 
with time, repeated determinations of the po
sition of a fixed location will give slightly dif
ferent results. 

The pseudorange errors come from several 
sources. The parameters in the navigation 
message describing the behavior of the sat
ellite clock account for almost all of the 
clock offset with respect to GPS time. How
ever, because the model used to describe the 
clock behavior is quite simple and the parame
ters of the model are predicted ahead of 
time, there are some small residual clocker
rors remaining in the pseudoranges. The po
sitions of the satellites as computed from the 
predicted ephemerides in the navigation mes
sages are also slightly in error. Other errors 
in the pseudoranges include unmodeled ef
fects of the ionosphere and troposphere, mul
tipath, receiver measurement error, and, for 
the civilian user, additional clock and orbiter
rors due to selective availability (SA) when 
it is in effect. 

User equivalent range error. Each of these er
rors, regardless of its origin, can be ex-

pressed as an error in the range between the 
user and the satellite. When an error is ex
pressed in this way, it is known as user 
equivalent range error (UERE) or as just 
user range error (URE). Over a sufficiently 
long period of time, these errors can be con
sidered to be random in nature, with negative 
and positive errors being about equally prob
able, giving a mean value of zero. Also, 
smaller errors are more probable than larger 
errors. 

If a graph is drawn of the frequency of oc
currence of an error of a certain size, a curve 
similar to that shown in Figure 4 will be ob
tained. Formally, we speak of the curve rep
resenting a certain probability density func
tion. The probability that an error will occur 
with a value between specified limits is the 
area under the curve between these limits on 
the horizontal axis. 

The shape of the probability density curve 
depends on the particular parameter being 
measured. However, in science and engineer
ing the probability density curve is often of 
a particular shape known as a Gaussian or nor
mal distribution. To quantify such a distribu
tion or dispersion of possible errors with a sin
gle number, we use the standard deviation 
and usually represent it by the Greek letter 
sigma (a). We can determine a experimen
tally by making a large number of observa
tions and calculating the square root of the 
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Figure 6. A sample of 1 00 normally distributed three-dimensional position errors. 
These artificially generated errors have standard deviations in latitude, longitude, and 
height of 15.2, 29.1, and 29.0 meters, respectively. The correlation between the er
rors in latitude and longitude is - 0.27; between latitude and height, 0.18; and be
tween longitude and height, 0.73. Cross-sectional views of the corresponding error 
ellipsoid and the sphere with a radius equal to the SEP (34.2 meters) are shown. Data 
points behind the sphere and some points in its interior are hidden from view. 

sum of the squares of the errors in the obser
vations divided by one less than the number 
of observations made. It is this method of 
computation that gives a its alias of root
mean-square (rms) error. 

For the Gaussian distribution, there is a 68 
percent chance that the magnitude of the er
ror we actually get will be smaller than the 
standard deviation. There is a 95 percent 
chance that it will be smaller than twice the 
standard deviation, and a 99.7 percent 
chance that it will be smaller than thrice the 
standard deviation. 

UERE errors originate from different 
sources and thus are independent of each 
other. However, we can calculate the com
bined error by taking the square root of the 
sum of the squares of the individual errors. 

This value is the total user equivalent range 
error. 

Dilution of precision. The total UERE is 
clearly not the error in the position deter
mined by a GPS receiver. UERE is only a 
measure of the error in the distance to one of 
the satellites. To determine the three-dimen
sional position error, we must also take into 
account where the satellites are in the sky 
with respect to the receiver. This satellite 
geometry - the spacing of satellites from 
which GPS signals are received and the re
sulting angles between the signal paths - re
sults in a larger or smaller uncertainty in the 
calculation of position. 

The contribution of relative satellite geom
etry to errors in position determination is 
known as dilution of precision (DOP) and 

has a multiplicative effect on UERE. Gener
ally, wider spacing between satellites and the 
receiver produces smaller errors, for reasons 
that will be discussed in a moment. Because 
a GPS receiver user can only obtain GPS 
satellite signals that are not blocked by the 
planet, i.e., that are above the horizon, 
the satellite geometry is already somewhat 
constrained. 

The most common quantification of DOP 
is through the position dilution of precision 
(PDOP) parameter. PDOP is the number 
that, when multiplied by the rms UERE, 
gives the rms position error (the square root 
of the sum of the squares of the standard de
viations in latitude, longitude, and height). 

PDOP is a mathematical function involv
ing the relative coordinates of the receiver 
and the satellites and can easily be computed 
for a particular satellite arrangement. PDOP 
using four satellites can also be visualized geo
metrically by looking at the tetrahedron 
formed by the end points of vectors of unit 
length pointing from the receiver to each of 
the satellites. PDOP is inversely proportional 
to the volume of this tetrahedron. The more 
spread out the satellites are in the sky, the 
larger the volume of the tetrahedron and the 
smaller the PDOP, and, hence, the smaller 
the rms position error. If more than four sat
ellites are in view, a GPS receiver can select 
the four that give the smallest PDOP. 

The minimum value of PDOP is obtained 
with one satellite at the user's zenith and 
three satellites with evenly spaced azimuths 
on the user's horizon. On the other hand, the 
maximum value of PDOP is, theoretically, in
finity. This would occur if the four satellites 
were situated in the same plane. The final 
GPS constellation has been designed to pro
vide users anywhere in the world with a 
PDOP of less than 6 (except for occasional 
very brief periods of time), assuming four sat
ellites are used with a minimum satellite ele
vation angle of 5°. 

Several other related DOP factors have 
been defined. HDOP is the dilution of preci
sion in the two horizontal coordinates; 
VDOP is the dilution of precision in the ver
tical coordinate; and TDOP is the dilution of 
precision in the range equivalent of the re
ceiver clock offset. A factor that combines 
the effects of geometry on both position and 
clock offset is the geometric dilution of pre
cision, GDOP. Figure 5 shows the global 
range of GDOP values, averaged over a 24-
hour period, for the current 15-satellite con
stellation. Users can expect the PDOP to be 
less than 3 most of the time once all the GPS 
satellites are in place. 



Other accuracy measures. In general, the three 
coordinates of a three-dimensional position 
fix will have different error probability dis
tributions and, hence, different standard de
viations. Also, the errors between any two co
ordinates may be mutually correlated; that is, 
an error in one coordinate will have an effect 
on the other. 

If we trace out a contour of equal error 
probability density in all three coordinates, 
we get an ellipsoid centered on our position 
fix. The shape of the ellipsoid is determined 
by the standard deviations of the coordinates 
and their correlations. (See Figure 6.) Note 
that, in general, due to the correlations, the 
ellipsoid axes are not oriented in the same di
rections as the coordinate axes. There is a cer
tain probability that the true position lies 
within the ellipsoid. If this probability is 20 
percent, then this ellipsoid is referred to as 
the standard error ellipsoid. 
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If the standard deviations for the three coor
dinate directions are identical, the ellipsoid de
generates into a sphere. The radius of such 
a sphere, inside of which there is a 50 per
cent probability of the true position fix being 
located, is called spherical error probable 
(SEP). 

The term SEP is used even when the ac
tual error figure is an ellipsoid. If we make 
a large number of position fixes at a given lo
cation, we can say that the SEP is the radius 
of the sphere containing 50 percent of the in
dividual fixes. The Department of Defense's 
accuracy goal for GPS is to have a world
wide SEP of 15 meters. 

If we forget about the height coordinate 
for the time being and consider just the hori
zontal coordinates, we can construct the two
dimensional analogue to the error ellipsoid: 
the error ellipse. It is defined as the contour 
of equal probability density in the two hori-
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Figure 7. A sample of 1 00 normally distributed horizontal position fix errors. These 
artificially generated errors have standard deviations in latitude and longitude of 15.8 
meters and 13.6 meters, respectively, with a correlation of 0.64. Shown are the error 
ellipse, the circle with 2 drms (41..8 meters) radius, and the circle with a radius equal 
to the CEP (16.4 meters) corresponding to this sample. 
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zontal dimensions. As with the error ellip
soid, an error ellipse has a certain probabil
ity that the true horizontal coordinates of a 
position lie within it. For the standard error 
ellipse, this probability is 39 percent. As 
with the error ellipsoid, the semi-axes of the 
error ellipse, in general, are not equal to the 
standard deviations. However, given the 
standard deviations in the horizontal coordi
nates and their correlation, the semimajor 
and semiminor axes of the ellipse can be 
calculated. 

The two-dimensional analogue of SEP is 
circular error probable (CEP). As shown in 
Figure 7, CEP is the radius of the circle in
side of which the true horizontal coordinates 
of a position have a 50 percent probability of 
being located. 

Another accuracy measure frequently used 
in navigation is twice the root-mean-square 
of the horizontal distance error, or 2 drms for 
short. It is equal to twice the square root of 
the sum of the squares of the lengths of the 
semimajor and semiminor axes of the error 
ellipse. A circle of radius 2 drms will con
tain the true horizontal position with a certain 
probability. Unfortunately, a drawback of 2 
drms as a measure of error is that it does not 
correspond to a fixed value of probability for 
a given value of error. The probability var
ies with the eccentricity of the error ellipse, 
ranging from 95.4 percent (the ellipse col
lapses to a line) to 98.2 percent (the ellipse 
becomes a circle). Because of this variation 
in probability, there is not a constant relation
ship between values of 2 drms and CEP. The 
ratio of 2 drms to CEP varies with the eccen
tricity of the error ellipse from 2.4 to 3 . 

Because of its wide use in navigation, 2 
drms is used to specify the designed level of 
horizontal positioning accuracy for the GPS 
Standard Positioning Service (SPS) and Pre
cise Positioning Service (PPS). The latest is
sue of the Federal Radionavigation Plan 
(FRP) states that when GPS is declared op
erational, the horizontal accuracy for SPS is 
planned to be 100 meters 2 drms at 95 per
cent probability. This means that 95 percent 
of all horizontal position fixes should be 
within 100 meters of the true position. 

But what about the other 5 percent? Theo
retically, if the position errors due to the vari
ous UEREs including SA are from a Gauss
ian distribution, we could occasionally get 
extremely large errors. However, the Depart
ment of Defense will control SA so that ex
cursions will not exceed 300 meters 99.99 per
cent of the time. The corresponding designed 
2 drms (95 percent) horizontal accuracy for 
PPS is 17. 8 meters. 



The FRP describes the designed accuracy 
of the vertical component of a GPS-derived 
position at the 2u level. As this corresponds 
to a 95 percent probability level, it is consis
tent with the accuracy quoted for the horizon
tal position. For SPS, the designed vertical 
2u is 156 meters; for PPS, it is 27.7 meters. 
The FRP also gives the designed accuracy 
of receiver clock synchronization at the 1 u 
level. For SPS, accuracy is planned to be 
167 nanoseconds; for PPS, it is given conser
vatively as 100 nanoseconds. 
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It should be pointed out that the stated and statistics involved in determining posi
PPS position and time accuracies are de- tions using GPS. Although a GPS receiver 
signed estimates of GPS capabilities, and su- can be operated without the user knowing 
perior results have already been obtained in any of this math, a basic understanding of 
practice. Significantly greater accuracies can how the receiver determines a position is im
be obtained by both PPS and SPS users by portant for assessing the accuracy and reliabil
operating in a differential mode with two or ity of the numbers presented on a receiver's 
more receivers used simultaneously. In fact, display screen. • 
almost all of the effects of SA can be re-
moved when operating in this mode. 

CONCLUSION 
In this column, we've taken a brief introduc
tory look at the geometry, algebra, calculus, 
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